地球科学进展 ›› 1998, Vol. 13 ›› Issue (5): 438 -446. doi: 10.11867/j.issn.1001-8166.1998.05.0438

干旱气候变化与可持续发展 上一篇    下一篇

地球深部物质电学性质实验研究
朱茂旭,谢鸿森   
  1. 中国科学院地球化学研究所 贵阳 550002
  • 收稿日期:1997-10-10 修回日期:1998-03-23 出版日期:1998-10-01
  • 通讯作者: 朱茂旭

EXPERIMENTAL RESEARCHES OF ELECTRICAL CHARACTERISTICS ON EARTH'S DEEP-INTERIOR MATERIALS

Zhu Maoxu,Xie Hongsen   

  1. Institute of Geochemisty, Chinese Academy of Sciences, Guiyang 550002
  • Received:1997-10-10 Revised:1998-03-23 Online:1998-10-01 Published:1998-10-01

地球深部物质电学性质的实验研究是了解地幔热结构和地幔动力学特征的重要手段之一,已越来越受到地球物理学家的重视。介绍了地球深部物质电学性质实验研究的基本原理、基本方法、电导的影响因素、实验研究的意义和今后的研究方向。

Experimental researches of electrical characteristics on earth’s deep-interior materials is one of important methods to obtain inform ation about thermal structure profile and dynamical feature of the mantle. More and more attentions of geophysicists have been drawn to this research field. This paper introduces basic principle, methods and significances of experimental researches. Factors affecting electrical conduction of earth’s deep-interior materials and further research items in the future are discussed as well.

中图分类号: 

[1] Li X Y, Jeanloz R. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures. J Geophys Res, 1990, 95(B4): 5 067-5 078.
[2] Duba A. Limits to electrical conductivity measurements of silicates. In: W Schreyer ed. High Pressure Researches in Geosciences. Schweizerbart.sche Verlagschandlung Stuttgart, 1982 375-381.
[3] Dobson D P, Richmond N C, Brodholt J B. A high-temperature elect rical conduction mechanism in the lower mantle phase (Mg, Fe)1- x O. Science, 1997, 275(21): 1 779-1 781.
[4] Gautason B, Muehlenbachs K. Oxygen diffusion in perovskite: implication for electrical conductivity in the lower mantle. Science, 1993, 260: 23, 518-521.
[5] Hirsch L M, Shankland T J. Determination of defect equilibria in minerals. J Geophys Res, 1991, 96(B1):377-384.
[6] Hirsch L M. Occurrence of small changes in electrical conduction of olivine arising from high-temperature creep. J Geosphs Res, 1989, 94(B12):17 861-17 870.
[7] Shankland T J, Peyronneau J, Poirier J P. Electrical conductivity of the earth.slower mantle. Nature, 1993, 366: 13-15.
[8] Rahman K M, Schneider S C, Seitz M A. Hopping and ionic conduction in Tin oxid-ebased thick-film resist or compositions. J Am Ceram Soc, 1997, 80(5): 98-202.
[9] Huebner S J, Voigt D E. Electrical conductivity of diopside: evidence for oxygen vacancies. Amer Miner, 1988, 73: 1 235-1 254.
[10] Constable S, Duba A. Electrical conductivity of olivine, a dunite and the mantle. J Geophys Res, 1990, 95(B1): 6 967-6 978.
[11] Schock R N . Electrical conduction in olivine. J Geophys Res, 1989, 94: 5 829-5 839.
[12] Peyronneau J, Poirier J P. Electrical conductivity of the earth. slower mantle. Nature, 1989, 342(30): 537-539.
[13] Hirsch L M. Electrical conduction of Co2SiO4. Phys Chem Minerals, 1990, 17: 187-190.
[14] Wanamaker B J, Duba A G. Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene- buffer conditions and implications for defect equilibria. J Geophys Res, 1993, 98(B1): 489-500.
[15] Bai Q, Wang Z- C, Kohlstedt D L. Manganese olivine I: electrical conductivity. Phys Chem Minerals, 1995, 22: 489-503.
[16] Li X Y, Jeanloz R. High pressure-temperature electrical conductivity of magnesiow ustite as a function of iron oxide concentration. J Geophys Res, 1990, 95(B13): 21 609-21 612.
[17] Wood B J, Nell J. High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe) O. Nature, 1991, 351(23):309-311.
[18] Li X Y, Jeanloz R. Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions. Nature,1991, 350: 332-334.
[19] Li X Y, Ming L C, M anghnani M - H. Pressure dependence of the electrical conductivity of (Mg0. 1 Fe0. 1) SiO3 perovskit e.J Geophys Res, 1993, 98(B1): 501-508.
[20] Huebner J S, Dillenaurg G D. Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra. Am Miner, 1995, 80: 46-64.
[21] Raistrick I D, Ho C, Huggins R A. Ionic conductivity of some lithium silicates and aluminosilicates. J Electrochem Soc,1976, 123: 1 469-1 476.
[22] Roberts J J, Tyburczy J A. Frequency dependent electrical properties of polycryst alline livine compacts. J Geophys Res,1991, 96(B10): 16 205- 16 222.
[23] Robert s J J, Tyburczy J A . Frequency dependent electrical propertiesof dunite as functions of temperature and oxygen fugacity. Phys Chem Minerals, 1993, 19: 545-561.
[24] Roberts J J, Tyburczy J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Minerals, 1993, 20: 19-26.
[25] Bakmann T h, Cemic L. Impedance spectroscopy and defect chemistry of fayalite. Phys Chem Minerals, 1996, 23: 186-192 .
[26] Tyburczy J A, Robert s J J. Low frequency eletrical response of polycryst alline olivine compacts: grain boundary transport. J Geophys Res, 1990, 17(11): 1 985-1 988.
[27] Kern H, Popp T. Thermal dehydration reactions characterised by combined measurements of electrical conductivity snd elastic wave velocities. Earth Planet Sci Lett , 1993, 120: 43-57.
[28] 宋茂双, 谢鸿森, 郑海飞, 等. 1- 5G Pa 压力下蛇纹石脱水反应温度的确定——电导率方法. 科学通报, 1996, 41(5):430-433.
[29] Waff H S. Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res, 1974, 79(26):4 003-4 010.
[30] Watanabe T, Kurita K. The relationship between electrical conductivity and melt fraction in a partially molten system:Arche’s law behavior. Phys Earth Planet Iinter, 1993, 78: 9-17.
[31] Watanabe T, Kurita K . Simultaneous measurements of the compressiona-l wave velocity and the electrical conductivity in a partially molten material. J Phys Earth, 1994, 42: 69- 87.
[32] Li X Y, Mao H-K. Solid carbon at high pressure: Electrical resistivity and phase t ransition. Phys Chem Minerals, 1994, 21:1-5.
[33] Lacam A. Effect of compostion and high pressures on the electrical conductivity of Fe-rich (Mg, Fe)2SiO4 olivines and spinels. Phys Chem Minerals, 1985, 12: 23-28.
[34] Omura K. Change of electrical conductivity of olivine associated with the olivine-sponel transition. Phys Earth Planet Inter, 1991, 65: 292-307.

[1] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[2] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[3] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[4] 张心昱,孙晓敏,袁国富,朱治林,温学发,康新斋,徐丽君. 中国生态系统研究网络水体pH和矿化度监测数据初步分析[J]. 地球科学进展, 2009, 24(9): 1042-1050.
[5] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[6] 杨晓志,夏群科,于慧敏,郝艳涛. 大陆下地壳高电导率的起源:矿物中的结构水[J]. 地球科学进展, 2006, 21(1): 31-38.
[7] 尚林波;胡瑞忠;樊文苓. 元素在气相中迁移的实验研究进展[J]. 地球科学进展, 2004, 19(2): 245-249.
[8] 侯渭,谢鸿森. 关于地核和核慢边界区物质的成分及运动特征的研究进展[J]. 地球科学进展, 1996, 11(2): 204-208.
[9] 徐有生,侯渭,郑海飞,谢鸿森. 超临界水的特性及其对地球深部物质研究的意义[J]. 地球科学进展, 1995, 10(5): 445-449.
[10] 侯渭,谢鸿森. 地球深部物质科学在地球深部研究中的作用和意义[J]. 地球科学进展, 1994, 9(6): 31-36.
[11] 侯渭. 美国高压研究中心研究工作进展[J]. 地球科学进展, 1993, 8(6): 63-65.
[12] 侯渭; 谢鸿森. 应用于地球深部物质科学研究的静态超高压实验技术[J]. 地球科学进展, 1993, 8(3): 7-13.
阅读次数
全文


摘要