地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 443 -455. doi: 10.11867/j.issn.1001-8166.2014.04.0443

学科发展与研究 上一篇    下一篇

由地表过程向地表系统科学研究跨越的机遇与挑战
丁永建 1, 张世强 1, 2, 韩添丁 1, 南卓铜 3   
  1. 1. 中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室, 甘肃 兰州 730000;
    2. 西北大学城市与环境学院, 陕西 西安 710069;
    3. 中国科学院寒区旱区环境与工程研究所寒旱区遥感与信息资源实验室, 甘肃 兰州 730000
  • 收稿日期:2014-03-08 出版日期:2014-04-10
  • 基金资助:

    国家自然科学基金重点项目“干旱区典型山区流域水量平衡观测试验与模拟研究”(编号:41030638); 国家自然科学基金创新群体项目“冰冻圈与全球变化”(编号:41121001)资助.

Opportunities and Challenges of Studies across Land Surface Processes to Land Surface System Sciences

Ding Yongjian 1,Zhang Shiqiang 1,2,Han Tianding 1,Nan Zhuotong 3   

  1. (1. State Key Laboratory of Cryosphere Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. College of Urban and Environmental Sciences, Northwest University, Xi’an 710069, China;
    3. Laboratory of Remote Sensing and Geospatial Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2014-03-08 Online:2014-04-10 Published:2014-04-10

基于对地表过程研究目前存在的问题及对全球变化、地球系统科学和可持续发展研究的国际背景的分析, 认为“地表过程”由要素过程研究向系统化的“地表系统科学”研究过渡, 是未来地表过程研究的着力点。通过对地表系统科学研究的对象与目标、关注的关键科学问题、研究的时空尺度和研究的方法与手段等方面的分析, 讨论了地表系统科学研究的基本框架。数据监测与分析系统、模拟集成系统和决策支持系统构成地表系统科学研究的主线; 地表系统科学的核心目标是通过对地表过程的系统研究, 满足科学研究、决策分析者对不同时空尺度复杂地表过程认识的需要。不同时空尺度的耦合与转换、地表圈层与其他圈层的相互作用关系、系统视角下面向复杂问题的关键过程选择及人与自然的耦合机制是当前亟待解决的关键科学问题。地表系统科学研究应采用综合、集成的研究方法, 地表全要素监测、多源数据融合、过程模拟及结果分析融为一体的研究途径。

Based on the analysis of the problems of land surface processes research and global change, and the international background of studies on the global climate change, earth system science, sustainable development research, we suggested that it be the right time for promoting studies on land surface system science to disciplinary systems, which also presents a rare opportunity. The current studies on land surface processes have many problems, such as systemic integration being not enough between different surface elements, there being no complete, systematic structural systems, the lack of a reasonable, effective integration methods and means on studies on land surface processes, and the studies on land surface processes not upgraded to discipline research level. Through the analysis of scientific research and theoretical understanding of the land surface system in China, and the international urgent scientific needs of scientific research on land surface systems, we suggested that studies on land surface processes transit from focusing on elements of the land surface process to the systematic land surface systems science, which is also the focal point of future studies on earth surface processes. On the basis of the above analysis, the object and targets, the key scientific issues, the spatial and temporal scales, and research methods and means of the studies on land surface system science were pointed out, and the basic framework of studies on land surface system science were discussed. Data monitoring and analysis system, simulation and integrated systems, and decision support systems constitute the main line of the land surface system science. The core objectives of the land surface system science are meeting the needs of complex decision analysis on different spatial and temporal scales on land surface processes of scientific research and decision-makers through the systemic studies on land surface processes. Coupling and conversing between different spatial and temporal scales, the interaction between land surface circle with other earth circles, the complex issues-oriented critical process selecting from the system perspective, and coupling mechanism of human and nature are key scientific issues on the studies on land surface system science. Definition and scale conversion of scientific research in spatial and temporal scales of the surface system. Land surface system science should include a comprehensive and integrated research on surface monitoring of total factor, multi-source data fusion, process analog and simulation, and results analysis.

中图分类号: 

[1] Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies on Earth surface processes: Progress and prospect [J]. Advances in Earth Science, 2013, 28(4):407-418. [丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4):407-418. ]
[2] Reid W V, Chen D, Goldfarb L, et al. Earth system science for global sustainability: Grand challenges[J]. Science, 2010, 330: 916-917.
[3] Reid W V, Bréchignac C, Lee Y. Earth System Research Priorities[J]. Science, 2009, 325: 245-245, doi:10. 1126/science. 1178591.
[4] Ma Zongjin, Gao Xianglin, Du Pinren. Pondering over the study on the outermost sphere system of the Earth[J]. Earth Science Frontiers, 2006, 13(6):96-101. [马宗晋, 高祥林, 杜品仁. 全球表层系统研究的思考[J]. 地学前缘, 2006, 13(6):96-101. ]
[5] Lu Dadao. Some key issues concerning development of geographical science in China[J]. Acta Geographica Sinica, 2003, 58(1):3-8. [陆大道. 中国地理学发展若干值得思考的问题[J]. 地理学报, 2003, 58(1):3-8. ]
[6] Huang Bingwei, Chen Chuankang, Cai Yunlong, et al. The theoretical foundation of regional sustainable development—Land system science[J]. Acta Geographica Sinica, 1996, 5: 445-453. [黄秉维, 陈传康, 蔡运龙, 等. 区域持续发展的理论基础——陆地系统科学[J]. 地理学报, 1996, 5:445-453. ]
[7] Huang Bingwei. Enhance the science foundation of sustainable development stratagem: Create Earth system science[J]. Impact of Science on Society, 1996, 51(1): 15-21. [黄秉维. 加强可持续发展战略科学基础: 建立地球系统科学[J]. 科学对社会的影响, 1996, 51(1): 15-21. ]
[8] Nan Zhuotong, Shu Lele, Zhao Yanbo, et al. Integrated modeling environment and a preliminary application on the Heihe River Basin, China[J]. Science in China (Series E), 2011, 54(8): 2 145-2 156, doi: 10. 1007/s11431-011-4410-4. [南卓铜, 舒乐乐, 赵彦博, 等. 集成建模环境研究及其在黑河流域的初步应用[J]. 中国科学:E辑, 2011, 41(8):1 043-1 054. ]
[9] Leng Shuying, Song Changqing. Review of land surface geographical process study and prospects in China[J]. Advances in Earth Science, 2005, 20(6):600-606. [冷疏影, 宋长青. 陆地表层系统地理过程研究回顾与展望[J]. 地球科学进展, 2005, 20(6):600-606. ]
[10] Ge Quansheng, Zheng Jingyun, Chen Guihua. Future of Earth Sciences[M]. Nanning: Guangxi Education Publisher, 1999. [葛全胜, 郑景云, 陈桂华. 地球科学的明天[M]. 南宁:广西教育出版社, 1999. ]
[11] Xu Xuegong, Li Shuangcheng, Cai Yunlong. Recent progress and prospect of integrated physical geography in China[J]. Acta Geographica Sinica, 2009, 46(9): 1 027-1 038. [许学工, 李双成, 蔡运龙. 中国综合自然地理学的近今进展与前瞻[J]. 地理学报, 2009, 46(9): 1 027-1 038. ]
[12] Qian Xuesen. On Geographical Scinece[M]. Hangzhou: Zhejiang Education Publisher, 1994. [钱学森. 论地理科学[M]. 杭州:浙江教育出版社, 1994. ]
[13] Qian Xuesen, Yu Jingyuan, Dai Ruwei. A new discipline of science—The study of open complex giant system and its methodology[J]. Nature Journal, 1990, 13(1):3-10. [钱学森, 于景元, 戴汝为. 一个科学新领域——开放的复杂系统及其方法[J]. 自然杂志, 1990, 13(1):3-10. ]
[14] Huang Bingwei. On Earth system science and sustainable development strategy(I)[J]. Acta Geographica Sinica, 1996, 51(4):350-357. [黄秉维. 论地球系统科学与可持续发展战略科学基础(I)[J]. 地理学报, 1996, 51(4):350-357. ]
[15] Wang Pinxian. Digging a time tunnel through the Earth system[J]. Science in China (Series D), 2009, 39(10):1 313-1 338. [汪品先. 穿凿地球系统的时间隧道[J]. 中国科学:D辑, 2009, 39(10):1 313-1 338. ]
[16] Zheng Du, Chen Shupeng. Progress and disciplinary frontiers of geographical research[J]. Advances in Earth Science, 2001, 16(5):599-606. [郑度, 陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展, 2001, 16(5):599-606. ]
[17] Lu Dadao. Theoretical studies of man-land system as the core of geographical science[J]. Geographical Research, 2002, 21(2):135-145. [陆大道. 关于地理学的“人—地系统”理论研究[J]. 地理研究, 2002, 21(2):135-145. ]
[18] Cai Yunlong, Lu Dadao, Zhou Yixing, et al. National demands for and development strategies of Chinese geography[J]. Acta Geographica Sinica, 2004, 59(6):811-819. [蔡运龙, 陆大道, 周一星, 等. 中国地理科学的国家需求与发展战略[J]. 地理学报, 2004, 59(6):811-819. ]
[19] Qu Jiansheng, Ge Quansheng, Zhang Xueqin. Development and comparison of the significations of global change and its correlated concepts[J]. Advances in Earth Science, 2007, 23(12):1 277-1 284. [曲建升, 葛全胜, 张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2007, 23(12):1 277-1 284. ]
[20] Zhou Xiuji. Somecoginitions on Earth system science[J]. Advances in Earth Science, 2004, 19(4):513-515. [周秀骥. 对地球系统科学的几点认识[J]. 地球科学进展, 2004, 19(4):513-515. ]
[21] Li Dewei. Outline of Earth system dynamics[J]. Geotectonica etMetallogenia, 2005, 29(3):285-294. [李德威. 地球系统动力学纲要[J]. 大地构造与成矿学, 2005, 29(3):285-294. ]
[22] Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London, 1976, 273(927): 593-610.
[23] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[24] Dickinson R E. Land surface processes and climate-surface albedos and energy balance[J]. Advances in Geophysics, 1983, 25: 305-353.
[25] Dickinson R E. Land surface[M]∥Trenberth K E, ed. Climate System Modeling. Cambridge, UK: Cambridge University Press, 1992:149-171.
[26] Sellers P J. Biophysical models of land surface processes[C]∥Trenberth K E, ed. Climate System Modeling. Cambridge, UK: Cambridge University Press, 1992:451-490.
[27] Garratt J R. Sensitivity of climate simulations to land-surface and atmospheric boundary layer treatments—A review[J]. Journal of Climate, 1993, 6(3): 419-448.
[28] Giorgi F, Avissar R. Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling[J]. Reviews of Geophysics, 1997, 35(4): 413-437.
[29] Pielke R A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall[J]. Reviews of Geophysics, 2001, 39(2): 151-177.
[30] Pitman A J. The evolution of, and revolution in, land surface schemes designed for climate models[J]. International Journal of Climatology, 2003, 23(5): 479-510.
[31] Yang Z L. Investigating impacts of anomalous land-surface conditions on Australian climate with an advanced land-surface model coupled with the BMRC AGCM[J]. International Journal of Climatology, 1995, 15:137-174.
[32] Chen F, Pielke R A, Mitchell K. Development and application of land-surface models for mesoscale atmospheric models: Problems and promises[C]∥Lakshmi V, Alberston J, Schaake J, eds. Land-Surface Hydrology, Meteorology, and Climate: Observations and Modeling Water Science and Application. American Geophysical Union, 2001, 3:107-135.
[33] Koster R D, Suarez M J. Soil moisture memory in climate models[J]. Journal of Hydrometeorology, 2001, 2: 558-570.
[34] Robock A, Mu M, Vinnikov K, et al. Land surface conditions over Eurasia and Indian summer monsoon rainfall[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D4):4 131, doi:10. 1029/2002JD002286.
[35] Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics [J]. Global Biogeochemical Cycles, 1996, 10: 603-628.
[36] Lu L, Pielke Sr R A, Liston G E, et al. Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States[J]. Journal of Climate, 2001, 14(5): 900-919.
[37] Dickinson R E, Berry J A, Bonon G B, et al. Nitrogen controls on climate model evapotranspiration[J]. Journal of Climate, 2002, 15(3): 278-295, doi:10. 1029/2004GL022076.
[38] Pielke R A, Avissar R, Raupach M, et al. Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate[J]. Global Change Biology, 1998, 4:461-475.
[39] Li Shuangcheng, Cai Yunlong. Some scaling issues of geography[J]. Geographical Research, 2005, 24(1):11-18. [李双成, 蔡运龙. 地理尺度转换若干问题的初步探讨[J]. 地理研究, 2005, 24(1):11-18. ]
[40] Yu Guirui, Sun Xiaomin. Principles of Flux Measurement in Terrestrial Ecosystems[M]. Being: Higher Education Press, 2006. [于贵瑞, 孙晓敏. 陆地生态系统通量观测的理论和方法[M]. 北京: 高等教育出版社, 2006. ]
[41] Wang Zijun, Chen Shengbo, Han Nianlong, et al. Research of geo-science scaling theories and methods[J]. Geospatial Information, 2007, 5(4):60-63. [汪自军, 陈圣波, 韩念龙, 等. 地学尺度转换理论及方法研究[J]. 地理空间信息, 2007, 5(4):60-63. ]
[42] Lü Yihe, Fu Bojie. Ecological scaleand scaling[J]. Acta Ecological Sinica, 2001, 21(12):2 096-2 105. [吕一河, 傅伯杰. 生态学中的尺度及尺度转换方法[J]. 生态学报, 2001, 21(12):2 096-2 105. ]
[43] Liu Jigen, Cai Qiangguo, Fan Liangxin, et al. Methods of scale transfer in modeling of soil erosion and sediment yield in catchments [J]. Journal of Sediment Research, 2004, 3:69-74. [刘纪根, 蔡强国, 樊良新, 等. 流域侵蚀产沙模拟研究中的尺度转换方法[J]. 泥沙研究, 2004, 3:69-74. ]
[44] Zhao Wenwu, Fu Bojie, Chen Liding. Some fundamental issues in scaling[J]. Advances in Earth Science, 2002, 17(6):905-911. [赵文武, 傅伯杰, 陈利顶. 尺度演绎研究中的几点基本问题[J]. 地球科学进展, 2002, 17(6):905-911. ]
[45] Haila Y. Scaling environmental issues: Problem and paradoxes[J]. Landscape and Urban Planning, 2002, 61:59-69.
[46] Fang Yiping, Qin Dahe, Ding Yongjian. Global main approches of risk and vulnerability assessment and implementation in scale transformation[J]. Arid Land Gerograph, 2009, 32(3):319-326. [方一平, 秦大河, 丁永建. 全球风险和脆弱性评价方法及其尺度转换的局限性[J]. 干旱区地理, 2009, 32(3):319-326. ]
[47] Zhao Lei, Meng Shuying. An analysis of accuracy loss during rastering land usespatial data with different grid size [J]. Remote Sensing for Land and Resource, 2009, 2:45-48. [赵磊, 孟淑英. 土地利用空间数据尺度转换中的精度损失分析[J]. 国土资源遥感, 2009, 2:45-48. ]
[48] Zeng Qingcun, Lin Chaohui. Recent progress on the Earth system dynamical model and its numical simulations[J]. Advances in Earth Science, 2010, 25(1):1-5. [曾庆存, 林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1):1-5. ]
[49] Yi Chuixiang. On Earth’s surface dynamics (I). A land surface system [J]. Journal of Beijing Normal University (Natural Science), 1994, 30(4): 511-515. [仪垂祥. 地球表层动力学理论研究(I)陆地表层系统[J]. 北京师范大学学报:自然科学版, 1994, 30(4): 511-515. ]
[1] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[2] 丁永建,周成虎,邵明安,陈亚宁,张甘霖,张世强,韩添丁,南卓铜. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.
[3] 冯仁国. 关于中国地理学发展的思考[J]. 地球科学进展, 2000, 15(4): 470-473.
阅读次数
全文


摘要