地球科学进展 ›› 2014, Vol. 29 ›› Issue (3): 361 -368. doi: 10.11867/j.issn.1001-8166.2014.03.036

上一篇    下一篇

夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系
刘春颖( ), 刘欢欢, 杨桂朋, 王莉莉 *( ), 张升辉   
  1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室,山东 青岛 266100
  • 收稿日期:2013-09-16 修回日期:2013-01-29 出版日期:2014-03-20
  • 通讯作者: 王莉莉 E-mail:roseliu@ouc.edu.cn;llw0329@163.com
  • 基金资助:
    国家自然科学基金项目“海洋中丙烯酸的产生、分布和迁移转化”(编号:41176062);国家自然科学基金重点项目“中国东海和黄海中生源硫的生产、分布、迁移转化与环境效应”(编号:41030858)资助

Relationships Among the Distributions of Acrylic Acid, Marine Environmental Factors and Chlorophyll a in the Yellow Sea Cold Water Mass in Summer

Chunying Liu, Huanhuan Liu( ), Guipeng Yang, Lili Wang( ), Shenghui Zhang   

  1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received:2013-09-16 Revised:2013-01-29 Online:2014-03-20 Published:2014-03-10

海水中主要含硫化合物β-二甲基巯基丙酸内盐(DMSP)降解可产生丙烯酸(AA)和活性气体二甲基硫(DMS)。2011年8月对黄海冷水团海域的AA及相关参量的分布特征进行了研究。结果表明,该海域表层海水中AA的浓度为0~0.208 μmol /L,平均值为(0.081±0.075) μmol/ L。AA的高值区出现在海域的东南部,可能是受到长江冲淡水的影响。AA的浓度总体上呈现出由南到北递增的趋势,与Chl-a较为一致,表明该海域的AA主要是由DMSP裂解产生的。表层海水中AA与温度表现出明显的负相关性。AA的垂直分布表现为:中层>底层>表层,这可能是产生AA的浮游植物与消耗AA的细菌共同作用的结果。海域中AA浓度与DMSP或DMS无明显的相关性。AA浓度远高于DMS,AA/DMS平均为106∶ 1,初步估算出DMSP降解产生的AA约为66.5%。AA/Chl-a平均为126.6 mmol/g,比DMSP/Chl-a高1个数量级,比DMS/Chl-a高2个数量级。

Acrylic acid (AA), together with the major biogenic sulfur compound dimethylsulfide (DMS), is microbially degraded from dimethylsulphoniopropionate (DMSP), which is one of the major sulfur compounds in the marine environment. Distributions of AA concentrations and related parameters in the Yellow Sea Cold Water Mass was studied during August, 2011. The results showed that the concentrations of AA ranged from 0 to 0.208 μmol/L in the surface water, with an average of (0.081±0.075) μmol/L. The high values appeared in the southeast part of this area, which was influenced by the Changjiang diluted water. An increasing trend from the north to the south of AA concentrations was basically consistent with that of chlorophyll a (Chl-a), suggesting that AA in this area was mainly the product of microbial cleavage of DMSP. There was a significant negative relationship between AA concentrations and temperature in the surface water. The vertical profile of AA concentrations were presented as follows: Middle>Bottom>Surface,which could be attributed to the combined effects of AA production from phytoplankton and AA consumption by aquatic bacteria. Concentrations of AA showed no obvious correlation with those of DMSP or DMS during this cruise, and they were far higher than concentrations of DMS. The average ratio of AA/DMS was 106∶ 1, and production of AA from the cleavage of DMSP was about 66.5% according to observed data. The average ratio of AA/Chl-a was found to be 126.6 mmol/g. It was one order of magnitude higher than that of DMSP/Chl-a and two orders of magnitude higher than that of DMS/Chl-a.

中图分类号: 

图1 黄海冷水团水域采样站位分布图
Fig.1 Map of the sampling stations in the Yellow Sea cold water mass
图2 黄海冷水域表层温度(℃)、盐度、Chl-a (μg/L)和AA浓度(μmol/L)的水平分布
Fig.2 Horizontal distribution of temperature(℃), salinity, Chl-a (μg/L) and acrylic acid (μmol/L) concentrations in surface waters of the Yellow Sea cold water mass
图3 冷水域A3~A13站位温度、盐度和密度的垂直变化图
Fig.3 Vertical profile of temperature (T), salinity (S) and density (D) at station A3~ A13 in the Yellow Sea cold water mass
图4 黄海冷水域A3~A13站位温度(℃)、盐度、Chl-a (μg/L) 和AA(μmol/L)的垂直分布
Fig.4 Vertical distribution of temperature, salinity(℃), Chl-a (μg/L) and acrylic acid concentrations (μmol/L) at station A3~A13 in the Yellow Sea cold water mass
图5 夏季冷水域表层海水中AA与温度、盐度和Chl-a的相关性
Fig.5 Relationship between the concentrations of acrylic acid and temperature, salinity or Chl-a in the surface waters of the Yellow Sea cold water mass
[1] Yang H F, Mctaggart A R, Davidson A. Primary productivity of acrylic acid and dimethylsulfide during a summer bloom of phaeocystis pouchetii in antarctic coastal water[J]. Antarctic Research, 1992, 4: 36-42.
[2] Gibson J A E, Swadling K M, Burton H R. Acrylate and Dimethylsulfoniopropionate (DMSP) concentrations during an Antarctica phytoplankton bloom[J]. New Sources of Reduced Sulfur Compounds, 1996, 19: 213-222.
[3] Bajt O, Sket B, Faganeli J. The aqueous photochemical transformation of acrylic acid[J]. Marine Chemistry, 1997, 58: 255-259.
[4] González J M, Johnson A W B, Vila-Costa M, et al. Genetics and molecular features of bacterial Dimethylsulfonio Propionate (DMSP) and Dimethylsulfide (DMS) transformations[M]∥Kenneth N T, ed. Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verleg,2010:1 202-1 209.
[5] Yang Guipeng, Jing Weiwen, Lu Xiaolan. Recent progress in the study of oceanic Dimethylsulfoniopropionate[J]. Periodical of Ocean University of China, 2004, 34(5): 854-860.
[杨桂朋,景伟文,陆小兰. 海洋中DMSP 的研究进展[J]. 中国海洋大学学报, 2004, 34(5): 854-860.]
[6] Wang Lili, Liu Chunying, Yang Guipeng, et al. Study progress on acrylic acid in ocean[J]. Marine environmental Science, 2012, 31(2): 295-299.
[王莉莉,刘春颖,杨桂朋,等. 海洋中丙烯酸的研究进展[J]. 海洋环境科学, 2012, 31(2): 295-299.]
[7] Sieburth J M. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals[J]. Journal of Bacteriol, 1961, 82: 72-79.
[8] Sieburth J M. Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters[J]. Science, 1960, 132: 676-677.
[9] Slezak D M, Puskaric S, Herndl G J. Potential role of acrylic acid in bacterioplankton communities in the sea[J]. Marine Ecology Progress Series, 1994, 105: 191-197.
[10] Noordkamp D J B, Schotten M, Gieskes W W C. High acrylate concentrations in the mucus of Phaeocystis globosa colonies[J]. Aquatic Microbial Ecology, 1998, 16: 45-52.
[11] Evans C, Malin G. Infectious titers of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethylsulfide and acrylic acid[J]. American Society of Limnology and Oceanography, 2006, 51(5): 2 468-2 471.
[12] Wang Zhaohui, Yin Yiwei, Chen Shanwen, et al. Studies on acute toxicity of acrylic acid and its esters to aquatic organisms[J]. Journal of Ji’nan University (Natural Science), 2002, 5(23): 76-79.
[王朝晖,尹伊伟,陈善文,等. 丙烯酸及丙烯酯对水生生物的急性毒性[J]. 暨南大学学报:自然科学版, 2002, 5(23): 76-79.]
[13] Andreae M O, Ferek R J, Bermond F, et al. Dimethylsulfide in the marine atmosphere[J]. Journal of Geophysical Research, 1985, 90: 12 891-12 900.
[14] Lovelock J E, Maggs R J, Rasmussrn R A. Atmospheric dimethylsulphide and the natural sulpher cycle[J]. Nature, 1972, 237: 452-453.
[15] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle[J]. Marine Chemistry, 1990, 30: 1-29.
[16] Zhang Miming, Chen Liqi, Wang Jianjun. Advances in studying the sea-air dimethysulphide exchange process in the southern ocean[J]. Advances in Earth Science, 2013, 28(9): 1 015-1 024.
[张麋鸣,陈立奇,汪建君.南大洋二甲基硫海—气交换过程研究进展[J].地球科学进展,2013, 28(9): 1 015-1 024.]
[17] Sun Xiangping. Marine Areas of China Offshore[M]. Beijing: Ocean Press of China, 2006: 376.
[孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006: 376.]
[18] Wang Baodong. Characteristics of variations and interrelations of biogenic elements in the Huanghai Sea cold water mass[J]. Acta Oceanologica Sinica, 2000, 6(22): 47-54.
[王保栋. 黄海冷水域生源要素的变化特征及相互关系[J]. 海洋学报,2000, 6(22): 47-54.]
[19] Liu Chunying, Wang Lili, Yang Guipeng, et al. Determination of acrylic acid in seawater by high performance liquid chromatography and its application[J]. Acta Oceanologica Sinica, 2013, 35(1): 172-176.
[刘春颖,王莉莉,杨桂朋,等. 海水中丙烯酸的高效液相色谱法建立及应用[J]. 海洋学报,2013, 35(1): 172-176.]
[20] Zhang H H, Yang G P, Liu C Y, et al. Seasonal variations of Dimethylsulfide (DMS) and Dimethylsulfoniopropionate (DMSP) in the sea-surface microlayer and subsurface water of Jiaozhou Bay and its adjacent area[J]. Acta Oceanologica Sinica, 2009, 28(2):1-14.
[21] Jeffrey S W, Mantoura R F C, Wrigh T S W.Phytoplankton Pigments in Oceanography: Guidenlines to Modern Methods[M]. Paris: UNESCO, 1997.
[22] Wei Qinsheng, Fu Mingzhu, Li Yan,et al.Observation of the seasonal evolution of DO,chlorophyll a maximum phenomena and nutrient accumulating in the southern Huanghai(Yellow)Sea cold water mass area[J].Acta Oceanologica Sinica,2013, 35(3): 142-154.
[韦钦胜,傅明珠,李艳,等. 南黄海冷水团海域溶解氧和叶绿素最大现象值及营养盐累积的季节演变[J].海洋学报,2013,35(3):142-154.]
[23] Gong Xiang, Shi Jie, Gao Huiwang. Subsurface chlorophyll maximum in ocean: Its characteristics and in-fluencing factors[J]. Advances in Earth Science, 2012, 27(5):539-548.
[宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J].地球科学进展,2012, 27(5): 539-548.]
[24] Li Hongbo, Xiao Tian, Ding Tao, et al. The distribution of bacterioplankton in the Yellow Sea cold water mass[J]. Acta Ecologica Sinica, 2006, 4(26): 1 012-1 020.
[李洪波, 肖天, 丁涛, 等. 浮游细菌在黄海冷水域中的分布[J]. 生态学报, 2006, 4(26): 1 012-1 020.]
[25] Liss P S, Malin G, Turner S M, et al. Dimethyl sulphide and Phaeocystis: A review[J]. Journal of Marine Systems, 1994, 5: 41-53.
[26] Yang G P, Zhang H H, Zhou L M, et al. Temporal and spatial variations of Dimethylsulfide (DMS) and Dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea[J]. Continental Shelf Research, 2011, 31: 1 325-1 335.
[27] Yang G P, Jing W W, Li L, et al. Distribution of Dimethylsulfide and Dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring[J]. Journal of Marine System, 2006, 62: 22-34.
[1] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[2] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(9): 952-959.
[3] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[4] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[5] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
[6] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[7] 谭丽菊,张哲,梁成菊,王江涛. 青岛邻近海域海水中有机碳的分布特征[J]. 地球科学进展, 2011, 26(4): 426-432.
[8] 王健,赵红梅,徐大伟,于晓菲,吕宪国,王国平. 湿地生态系统中的多环芳烃研究进展[J]. 地球科学进展, 2009, 24(8): 936-941.
[9] 唐阵武,岳勇,许其功. 水体中多溴联苯醚污染及其生态风险[J]. 地球科学进展, 2009, 24(2): 204-210.
[10] 王宇,张贵. 滇东岩溶石山地区石漠化特征及成因[J]. 地球科学进展, 2003, 18(6): 933-938.
[11] 张佩芳,许建初. 云南境内澜沧江流域土地利用时空变化特征及动因分析[J]. 地球科学进展, 2003, 18(6): 947-953.
[12] 王根绪,程国栋,钱鞠,常娟. 中国干旱内陆流域水体 N、P负荷特征与动态变化——以黑河流域为例[J]. 地球科学进展, 2003, 18(3): 338-344.
[13] 张桂玲;张经. 海洋中溶存甲烷研究进展[J]. 地球科学进展, 2001, 16(6): 829-835.
阅读次数
全文


摘要