地球科学进展 ›› 2013, Vol. 28 ›› Issue (12): 1287 -1295. doi: 10.11867/j.issn.1001-8166.2013.12.1287

   下一篇

植硅体现代过程研究进展
李仁成 1, 2( ), 樊俊 1, 2, 高崇辉 1, 2   
  1. 1.广西矿冶与环境科学实验中心,广西桂林 541004
    2. 广西隐伏金属矿产勘查重点实验室,桂林理工大学,广西桂林 541004
  • 收稿日期:2013-08-16 修回日期:2013-11-18 出版日期:2013-12-10
  • 基金资助:
    [HT6SS][ZK(]国家自然科学基金项目#cod#x0201c;广西青狮潭库区禾本科植硅体季节变化及其在库内表层沉积物分布特征研究#cod#x0201d;(编号:41262009);广西自然科学基金项目#cod#x0201c;植物叶蜡季节变化及其在埋藏条件下的早期成岩效应研究#cod#x0201d;(编号:2012jjAA50048)资助.

Advances in Modern Phytolith Research

Rencheng Li 1, 2( ), Jun Fan 1, 2, Chonghui Gao 1, 2   

  1. 1.Guangxi Scientific Experiment Center of Mining,Metallurgy and Environment,Guilin 541004, China
    2.Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration,Guilin University of Technology,Guilin 541004,China
  • Received:2013-08-16 Revised:2013-11-18 Online:2013-12-10 Published:2013-12-10

植硅体分析广泛应用于古环境重建研究,其现代过程研究有利于准确解释植硅体数据。植硅体现代过程研究主要包括:现代植物植硅体的形态分析;植硅体形成与生长及环境因子之间的关系;植硅体在现代土壤及沉积物中的运移及埋藏效应分析等方面。植硅体的形成不仅受基因控制,而且受降水、湿度、温度、CO2浓度、土壤pH值及营养状况等环境因子影响,现代植物植硅体形态、组合及碳、氧同位素能够响应环境因子的变化;此外,植硅体的运移和埋藏作用影响其组合,且因植硅体类型、土壤及沉积物质地不同而有差异。为了促进植硅体分析在古环境研究中的应用,现代植物植硅体形态、种类分析、植硅体形成与环境因子之间关系以及不同环境条件下植硅体的运移及埋藏效应研究非常必要。

Phytolith has been widely used as a tool to reconstruct the paleoenvironment, and the investigation of modern phytolith is very crucial to the accurate interpretation of phytolith data in ancient sediments. Studies of modern process of phytolith primarily include the morphological analysis of phytolith in modern plants, and the relationships between the formation and growth of phytolith and environmental factors, as well as the transportation and taphonomy of phytolith in modern soils and sediments. The formation of phytolith in plants is controlled not only by genes but also by environmental factors, such as humidity, precipitation, temperature, CO2 concentration, soil pH, and nutrient status, etc. The morphology, assemblages, 13C and 18O of phytolith in plants can respond sensitively to environmental variables. The phytolith assemblages can be affected by its taphonomy and transportation that may be different due to phytolith types and soils/sediments texture. It is necessary to investigate the phytolith morphology and types in modern plants, the relationship between its formation and environmental factors, and the impact of transportation and taphonomy on phytolith assemblages under different environmental conditions in order to promote the application of phytolith analysis to paeloenvironment reconstruction.

[54] Andrejko M J, Cohen A D. Scanning electron microscopy of silicophytoliths from the Okefenokee swamp marsh complex[M]//Cohen A D, Casagrande D J, Andrejko M J, et al, eds. The Okefenokee Swamp: Its Natural History, Geology and Geochemistry. Los Alamos, New Mexico: Wetlands Surveys, 1984: 468-491.
[55] Moulia B. The biomechanics of leaf rolling[J]. Biomimetics, 1994, 2: 267-281.
[56] Liu L, Jie Dongmei, Liu Hongyan, et al.Response of phytoliths in Phragmites communis to humidity in NE China[J]. Quaternary International, 2013, 304: 193-199.
[57] Lu H Y, Liu K B. Morphological variations of lobate phytoliths from grasses in China and the southeastern USA[J]. Diversity and Distributions, 2003, 9: 73-87.
[58] Ge Yong, Jie Dongmei, Guo Jixun, et al. Response of phytoliths in Leymus chinensis to the simulation of elevated global CO2 concentrations in Songnen Grassland, China[J]. Chinese Science Bulletin, 2010, 55(32): 3 703-3 708.
[葛勇, 介冬梅, 郭继勋, 等.松嫩草原羊草植硅体对模拟全球CO2 浓度升高的响应研究[J]. 科学通报, 2010, 55(27): 2 735-2 741.]
[59] Xu Chengxiang, Liu Youliang. Silicon absorption, transport and accumulation in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 1 071-1 078.
[徐呈祥, 刘友良.植物对Si的吸收、运输和沉积[J]. 西北植物学报, 2006, 26(5): 1 071-1 078.]
[60] Cabanes D, Weiner S, Shahack-Gross R. Stability of phytoliths in the archaeological record: A dissolution study of modern and fossil phytoliths[J]. Journal of Archaeological Science, 2011, 38: 2 480-2 490.
[61] Fisher R F, Newell Bourne C, Fisher W F. Opal phytoliths as an indicator of the foristics of prehistoric grasslands[J]. Geoderma, 1995, 68(4): 243-255.
[1] Wang Yongji, L#cod#x000fc; Houyuan. Phytolith Study and Its Application[M]. Beijing: China Ocean Press, 1993.
[王永吉, 吕厚远.植物硅酸体研究及应用[M]. 北京: 海洋出版社, 1993.]
[2] Alexandre A, Meunier J D, Lezine A M, et al. Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136: 213-229.
[3] Twiss P C. Grass opal phytoliths as climatic indicators of the great plains pleistocene[M]//Johnson W C, ed. Quaternary Environments of Kansas. Kansas: Kansas Geological Survey, Guidebook Series, 1987: 79-188.
[4] Kelly E, Amundson R G, Marino B D, et al. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change[J]. Quaternary Research, 1991, 35: 222-233.
[5] Fredlund G G, Tieszen L T. Calibrating grass phytolith assemblages in climatic terms: Application to late Pleistocene assemblages from Kansas and Nebraska[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 136: 199-211.
[6] Barboni D, Bonnefille R, Alexandre A, et al. Phytoliths as palaeoenvironmental indicators, West Side Middle Awash Valley, Ethiopia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152: 87-100.
[7] Li R C, Cater J A, Xie S C, et al. Phytoliths and microcharcoal at Jinluojia archeological site in middle reaches of Yangtze River indicative of paleoclimate and human activity during the last 3000 years[J]. Journal of Archaeological Science, 2010, 37: 124-132.
[8] Gu Y S, Pearsall D M, Xie S C, et al. Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from phytolith and charcoal records from Holocene sediments[J]. Journal of Biogeography, 2008, 35: 325-341.
[9] L#cod#x000fc; Houyuan, Wu Naiqin, Liu Tungsheng, et al. Seasonal climatic variation recorded by phytolith assemblages from the Baoji loess sequence in central China over the last 150000a[J]. Science in China (Series D),1996, 26(2): 131-136.
[吕厚远, 吴乃琴, 刘东生, 等.150 ka来宝鸡黄土植硅体组合季节性气候变化J].中国科学: D辑, 1996, 26(2): 131-136.]
[10] Abrantes F A. 340,000 year continental climate record from tropical Africa news from opal phytoliths from the equatorial Atlantic[J]. Earth and Planetary Science Letters, 2003, 209: 165-179.
[11] Boyd M. Phytoliths as paleoenvironmental indicators in a dune field on the northern Great Plains[J]. Journal of Arid Environments, 2005, 61: 357-375.
[12] Huang F, Kealhofer L, Xiong S F, et al. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia[J]. Science in China(Series D), 2005, 48(7): 1 025-1 039.
[13] Runge F. The opal phytolith inventory of soils in central Africa: Quantities, shapes, classification, and spectra[J]. Review of Palaeobotany and Palynology, 1999, 107: 23-53.
[14] Lu H Y, Wu N Q, Yang X D, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions[J]. Quaternary Science Reviews, 2006, 25: 945-959.
[15] Gu Yansheng, Qin Yangmin, Zhu Zongmin. Mid-late Pleistocene palaeovegetation and palaeoclimate change reconstructed by phytolith and molecular fossil records of vermicular red Earth in Changxing, Zhejiang[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 125-130.
[顾延生, 秦养民, 朱宗敏.浙江长兴中#cod#x02014;晚更新世红土植桂体与分子化石记录及其环境意义[J]. 海洋地质与第四纪地质, 2007, 27(1): 125-130.]
[16] Wallis L A. Environmental history of northwest Australia basedon phytolith analysis at Carpenter#cod#x02019;s Gap 1[J]. Quaternary International, 2001, 83/85: 103-117.
[17] Barboni D, Bremond L, Bonnefille R. Comparative study of modern phytolith assemblages from inter-tropical Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246: 454-470.
[18] Guo M, Jie D M, Liu H M, et al. Phytolith analysis of selected wetland plants from Changbai Mountain region and implications for palaeoenvironment[J]. Quaternary International, 2012, 250: 119-128.
[19] Thorn Vanessa C. Phytolith evidence for C4-dominated grassland since the early Holocene at Long Pocket, northeast Queensland, Australia[J]. Quaternary Research, 2004, 61: 168-180.
[20] Carter J A. Phytolith analysis and paleoenvironmental reconstruction from lake Poukawa Core, Hawkes Bay, New Zealand[J]. Global and Planetary Change, 2002, 33: 257-267.
[21] Twiss P C, Suess E, Smith R M. Morphological classification of grass phytoliths[J]. Soil Science Society of America Proceedings, 1969, 33: 109-115.
[22] Twiss P C. Predicted world distribution of C3 and C4 grass phytoliths[M]//Rapp G, Mulholland Jr S C, eds. Phytolith Systematics: Emerging Issues. New York: Plenum Press, 1992: 113-128.
[23] Brown D A. Prospects and limits of a phytolith key for rasses in the central United States[J]. Journal of Archaeological Science, 1984, 11: 345-368.
[24] Piperno D R, Pearsall D M. The silica bodies of tropical American grasses: Morphology, taxonomy, and implications for grass systematics and fossil phytolith identification[J]. Smithsonian Contributions to Botany, 1998, 85: 1-40.
[25] Piperno D R. Phytoliths: A Comprehensive Guide to Archaeologists and Palaeoecologists[M]. Lanham: Altamira Press, 2006.
[26] Fredlund G G, Tieszen L T. Modern phytolith assemblages from the North American Great Plains[J]. Journal of Biogeography, 1994, 21: 321-335.
[27] Diester-Haas L, Schrader H J, Thiede J. Sedimentological and paleo climatological investmigations of two Pelagicooze Cores off Cape Barbas, North-West Africa[J]. Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, Gebr#cod#x000fc;der Borntr#cod#x000fc;ger, Berlin, Stuttgart, 1973, C16: 19-66.
[28] Wang W M. Climate indexes of phytoliths from Homo erectus#cod#x02019;cave deposits in Nanjing[J]. Chinese Science Bulletin, 2003, 48: 2 005-2 009.
[29] Bremond L, Alexandre A, Odile P, et al. Grass water stress estimated from phytoliths in West Africa[J]. Journal of Biogeography, 2005, 32: 311-327.
[30] Lu H Y, Wu N Q, Liu Kam-Biu, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: Palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007, 26: 759-772.
[62] Rovner I. Plant opal phytolith analysis[J]. Advances in Archaeological Method and Theory, 1983, 6: 225-266.
[63] Fishkis O, Ingwersen J, Lamers M, et al. Phytolith transport in soil: A field study using fluorescent labeling[J]. Geoderma, 2010, 157: 27-36.
[64] Fishkis O, Ingwersen J, Streck T. Phytolith transport in sandy sediment: Experiments and modeling[J]. Geoderma, 2009, 151: 168-178.
[65] Blinnikov M S. Phytoliths in plants and soils of the interior Pacific Northwest USA[J]. Review of Paleobotany and Palynology, 2005, 135: 71-98.
[66] Zhang Xinrong, Hu Ke, Jie Dongmei. Characteristics of phytolith assemblages in surface soil from the vertical forest zones of the Changbai Mountains[J]. Acta Geoscientica Sinica, 2006, 27(2): 169-173.
[张新荣, 胡克, 介冬梅.长白山北坡垂直植被带表土植硅体组合研究[J]. 地球学报, 2006, 27(2): 169-173.]
[67] Jenkins E. Phytolith taphonomy: A comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum[J]. Journal of Archaeological Science, 2009, 36: 2 402-2 407.
[68] Parr J F, Lentfer C J, Boyd W E. A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material[J]. Journal of Archaeological Science, 2001, 28: 875-886.
[69] Rosen A M, Weiner S. Identifying ancient irrigation: A new method using opaline phytoliths from emmer wheat[J]. Journal of Archaeological Science, 1994, 21: 125-132.
[31] Zhang Xinrong, Hu Ke, Fang Shi, et al. Construction and application of phyolith-climate transfer function in peat surface deposits of Northeast China[J]. Acta Sedimentologica Sinica, 2008, 26(4): 676-682.
[张新荣, 胡克, 方石, 等.东北泥炭表土沉积植硅体#cod#x02014;气候因子转换函数建立及应用[J]. 沉积学报, 2008, 26(4): 676-682.]
[32] Delhon C, Alexandre A, Berger J F, et al. Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation[J]. Quaternary Research, 2003, 59(1): 48-60.
[33] Li Rencheng, Xie Shucheng, Gu Yansheng. Advances in the biogeochem ical study of phytolity stable isotope[J]. Advances in Earth Science, 2010, 25(8): 812-819.
[李仁成, 谢树成, 顾延生.植硅体稳定同位素地球生物化学研究进展[J]. 地球科学研究进展, 2010, 25(8): 812-819.]
[34] Carter J A. Atmospheric carbon isotope signatures in phytolith-occluded carbon[J]. Quaternary International, 2009, 193: 20-29.
[35] Webb E A, Longstaffe F J. The oxygen isotopic compositions of silica phytoliths and plant water in grasses: Implications for the study of paleoclimate[J]. Geochimica et Cosmochimica Acta, 2000, 64: 767-780.
[36] Webb E, Longstaffef F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass[J]. Geochimica et Cosmochimica Acta, 2002, 66: 1 891-1 904.
[37] Webb E A, Longstaffe F J. The relationship between phytolith and plant-water 18O values in grasses[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1 437-1 449.
[38] Fan Bin, Xu Shiyuan, Yu Lizhong, et al. Phytolith in the sediment of the lake Chaohu since Middle Holocene and its paleoenvironmental implications[J]. Journal of Lake Sciences, 2006, 18(3): 273-279.
[范斌, 许世远, 俞立中, 等.巢湖沉积植硅体组合及中全新世以来的环境演变[J]. 湖泊科学, 2006, 18(3): 273-279.]
[39] Kelly E F, Blecker S W, Yonker C M, et al. Stable isotope composition of soil organic matter and phytoliths as paleoenvironmental indicators[J]. Geoderma, 1998, 82: 59-81.
[40] Lu H Y, Liu Kambiu. Phytoliths of common grasses in the coastal environments of southeastern USA[J]. Estuarine, Coastal and Shelf Science, 2003, 58: 587-600.
[41] Lu H Y, Liu Kambiu. Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States[J]. Diversity and Distributions, 2003, 9: 73-87.
[42] Madella M, Jones M K, Echlin P, et al. Plant water availability and analytical microscopy of phytoliths: Implications for ancient irrigation in arid zones[J]. Quaternary International, 2009, 193: 32-40.
[43] Madella M, Lancelotti C. Taphonomy and phytoliths: A user manual[J]. Quaternary International, 2012, 275: 76-83.
[44] Lawton J R. Observations on the structure of epidermal cells, particularly the cork and silica cells, from flowering stem internode of Lolium temulentum L. (Germinae)[J]. Botanical Journal of the Linnean Society, 1980, 80(2): 161-177.
[45] Motomura H, Mita A, Suzuki M. Silica accumulation in long-lived leaves of Sasa veitchii (Carri#cod#x000e8;re) Rehder (Poaceae: Bambusoideae)[J]. Annals of Botany, 2002, 90: 149-152.
[46] Motomura H, Fujii T, Suzuki M. Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carri#cod#x000e8;re) Rehder (Poaceae: Bambusoideae)[J]. Annals of Botany, 2004, 93: 235-248.
[47] Jie Dongmei, Ge Yong, Guo Jixun, et al. Response of phytolith in Leymus chinensis to the simulation of global warming and nitrogen deposition on Songnen Grassland, China[J]. Environmental Science, 2010, 31(8): 1 709-1 715.
[介冬梅, 葛勇, 郭继勋, 等.中国松嫩草原羊草植硅体对全球变暖和氮沉降模拟的响应研究[J]. 环境科学, 2010, 31(8): 1 708-1 715.]
[48] Li Quan, Xu Deke, L#cod#x000fc; Houyuan. Morphology of phytolith of Bambusoideae (Gramineae) and its ecological significance[J]. Quaternary Science, 2005, 25(6): 777-784.
[李泉, 徐德克, 吕厚远.竹亚科植硅体形态学研究及其生态学意义[J]. 第四纪研究, 2005, 25(6): 777-784. ]
[49] Li Rencheng. Taxonomic Significance and Seasonal Variations of Lipid from Bamboo Leaf and Its Phytolith[D]. Wuhan: China University of Geosciences, 2010.
[李仁成.竹叶及其植硅体类脂物的分类学意义及其季节性变化[D]. 武汉:中国地质大学, 2010.]
[50] Webb E A, Longstaffe F J. Limitations on the climatic and ecological signals provided by the #cod#x003b4;13C values of phytoliths from a C4 North American prairie grass[J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3 041-3 050.
[51] Shahack-Gross R, Shemesh A, Yakir D, et al. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction[J]. Geochimica et Cosmochimica Acta, 1996, 60: 3 949-3 953.
[52] Montti L, Fernndez H M, Osterrieth M, et al. Phytolith analysis of Chusquea ramosissima Lindm. (Poaceae: Bambusoideae) and associated soils[J]. Quaternary International, 2009, 193: 80-89.
[53] Sangster A G, Parry D W. Some factors in relation to bulliform cell silicification in the grass leaf[J]. Annals of Botany, 1968, 33: 315-323.
[1] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[5] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[6] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[7] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[8] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[9] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[10] 曾溅辉, 杨智峰, 冯枭, 乔俊程, 张忠义. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651-661.
[11] 曾溅辉, 杨智峰, 冯枭, 乔俊程, 张忠义. 致密储层油气成藏机理研究现状及其关键科学问题 *[J]. 地球科学进展, 2014, 2014(6): 651-661.
[12] 陈科贵, 李利, 李春梅, 于静, 王林, 林新. 活动陆块背景下蒸发盆地后生阶段富钾区的演变[J]. 地球科学进展, 2014, 29(4): 515-522.
[13] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[14] 冉祥滨,于志刚,臧家业,刘大海,车宏,郑莉莉. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.
[15] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
阅读次数
全文


摘要