地球科学进展 ›› 2013, Vol. 28 ›› Issue (10): 1106 -1118. doi: 10.11867/j.issn.1001-8166.2013.10.1106

综述与评述 上一篇    下一篇

纳米零价铁原位修复有机卤化物的影响因素
李云春, 王显祥 *, 赵茂俊   
  1. 四川农业大学生命科学与理学院, 四川 雅安 625014
  • 收稿日期:2013-01-06 出版日期:2013-10-10
  • 通讯作者: 王显祥(1978-), 男, 重庆云阳人, 教授, 主要从事荧光光谱分析及环境毒理分析研究.E-mail: xianxiangwang@hotmail.com
  • 基金资助:

    四川省教育厅重点科研项目“微乳液洗脱与纳米铁复合物相结合修复土壤中的永久性有机污染物”(编号:09ZA062)资助.

Influence Factors on the In-situ Remediation of Halogenated Organic Compounds by Nanoscale Zerovalent Iron

Li Yunchun, Wang Xianxiang, Zhao Maojun   

  1. College of Life and Sciences, Sichuan Agricultural University, Ya'an 625014, China
  • Received:2013-01-06 Online:2013-10-10 Published:2013-10-10

土壤和地下水的有机卤化物污染日益严重, 且HOCs毒性强、难生物降解。纳米零价铁由于其独特的性质, 已成为国内外原位修复研究的热点。在NZVI降解HOCs反应机理和动力学的基础上, 综述了不同方法制备的裸露NZVI和不同修饰型NZVI 的内在性质, 以及pH、溶解氧、离子、金属、不反应的疏水性有机物和天然有机物、HOCs的浓度和组成、微生物和地下异质性等外在环境因素对NZVI原位修复的稳定性、输送性、锚定目标物能力以及反应活性等方面的影响, 并对该技术的实际应用做出了总结和展望。

The pollution of soil and groundwater by halogenated organic compounds (HOCs) is more and more severe. HOCs are of strong toxicity and difficult to be biodegraded. Due to its unique advantages, nanoscale zerovalent iron (NZVI) has become a hot research topic in the field of insitu remediation around the world. In this paper, basic reaction theories and kinetics of HOCs degradation by NZVI are briefly summarized. The influence factors on the insitu remediation of HOCs by NZVI are comprehensively discussed. The influence factors include the intrinsic properties of NZVI due to its different preparation and modification methods, and environment factors, such as pH, dissolved oxygen, ionic species, metals, nonreactive hydrophobic and natural organic compounds, concentrations and components of HOCs, microorganisms and subsurface heterogeneity. The effects of all these factors on NZVI stability, deliverability, targeting ability, and reactivity during insitu remediation are emphasized. Finally, the practical application of this technology are summarized and prospected.

中图分类号: 

[1]Zhang Huan. Preparation and Modification of Supported Nano Fe/Cu Bimetal and Fundamental Research of Remediation on the Trichlorethylene Reduction[D]. Tianjin: Nankai University, 2006.[张环. 负载型纳米铁铜二元金属的合成与改性及其修复地下水中有机氯污染物的基础研究[D]. 天津: 南开大学, 2006.]
[2]Dai Shugui. Environmental Chemistry[M]. Beijing: High Education Press, 2006:167-169.[戴树桂. 环境化学[M].北京: 高等教育出版社, 2006:167-169.]
[3]Mueller N C, Braun J, Bruns J, et al. Application of Nanoscale Zero Valent Iron (NZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research, 2012, 19: 550-558.
[4]Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: A review of the benefits and potential risks[J]. Environmental Health Perspectives, 2009, 117: 1 823-1 831.
[5]Zhang W X. Nanoscale iron particles for environmental remediation: An overview[J]. Journal of Nanoparticle Research, 2003, 5: 323-332.
[6]Cheng Rong, Wang Jianlong, Zhang Weixian. The research progress on degradation of halogenated organic compounds by nano iron[J]. Progress in Chemistry, 2006, 18(1): 93-99.[程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展[J]. 化学进展, 2006, 18(1): 93-99.]
[7]Ram M K, Andreescu S, Ding H. Nanotechnology for Environmental Decontamination[M]. Beijing: Science Press, 2011: 271-322, 379-395.
[8]Li L, Fan M H, Brown R C, et al. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review[J]. Critical Reviews in Environmental Science and Technology, 2006, 36: 405-431.
[9]Liu Y, Phenrat T, Lowry G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution[J]. Environmental Science and Technology, 2007, 41: 7 881-7 887.
[10]Qiu Xinhong, Fang Zhanqiang. Degradation of halogenated organic compounds by modified nano zero-valent iron[J]. Progress in Chemistry, 2010, 22(2/3): 291-297.[邱心泓, 方占强. 修饰型纳米零价铁降解有机卤化物的研究[J]. 化学进展, 2010, 22(2/3): 291-297.]
[11]Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today, 1998, 40: 387-395.
[12]Liu Y, Majetich S A, Tilton R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties[J]. Environmental Science and Technology, 2005, 39: 1 338-1 345.
[13]Liu Y, Lowry G V. Effect of particle age Fe0 content and solution pH on NZVI reactivity H2 evolution and TCE dechlorination[J]. Environmental Science and Technology, 2006, 40: 6 085-6 090.
[14]Sarathy V, Tratnyek P G, Nurmi J T, et al. Aging of iron nanoparticles in aqueous solution effects on structure and reactivity[J]. Journal of Physical Chemistry C, 2008, 112: 2 286-2 293.
[15]Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal[J]. Environmental Science and Technology, 1996, 30: 2 634-2 640.
[16]Liu Fei, Huang Yuanying, Zhang Guochen. Factors influencing the removal of chlorinated hydrocarbons by nano-scale Ni/Fe[J]. Earth Science Frontiers, 2006, 13(1):150-154.[刘菲, 黄圆英, 张国臣. 纳米镍/铁去除氯代烃影响因素的探讨[J]. 地学前缘, 2006, 13(1): 150-154.]
[17]Li F, Vipulanandan C, Mohanty K K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene[J]. Colloids and Surfaces A, 2003, 223:103-112.
[18]Phenrat T, Saleh N, Sirk K, et al. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation[J]. Journal of Nanoparticle Research, 2008, 10: 795-814.
[19]Saleh N, Phenrat T, Sirk K, et al. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil water interface[J]. Nano Letters, 2005, 5(12): 2 489-2 494.
[20]Phenrat T, Liu Y Q, Tilton R D, et al. Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water conceptual model and mechanisms[J]. Environmental Science and Technology, 2009, 43: 1 507-1 514.
[21]Sakulchaicharoen N, O’Carroll D M, Herrera J E. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale Fe-Pd particles[J]. Journal of Contamination Hydrology, 2010, 118: 117-127.
[22]Saleh N, Sirk K, Liu Y Q, et al. Surface modifications enhance nanoiron transport and NAPLS targeting in saturated porous media[J]. Environmental Engineering Science, 2007, 24(1): 45-57.
[23]Phenrat T, Kim H J, Fagerlund F, et al. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns[J]. Environmental Science and Technology, 2009, 43(13): 5 079-5 085.
[24]Santanu P. Surfacant-enhanced remediation of organic contaminated soil and water[J]. Advances in Colloid and Interface Science, 2008, 138: 24-58.
[25]Berge N D, Ramsburg C A. Oil-in-water emulsions for encapsulated delivery of reactive iron particles[J]. Environmental Science and Technology, 2009, 43(13): 5 060-5 066.
[26]Sunkara B, Zhan J J, He J B, et al. Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2 854-2 862.
[27]Hoch L B, Mack E J, Hydutsky B W, et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science and Technology, 2008, 42(7): 2 600-2 605.
[28]Zheng T H, Zhan J J, He J B, et al. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation[J]. Environmental Science and Technology, 2008, 42(12): 4 494-4 499.
[29]Zhan J J, Zheng T H, Piringer G, et al. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene[J]. Environmental Science and Technology, 2008, 42(23): 8 871-8 876.
[30]Schrick B, Blough J L, Jones A D, et al. Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles reaction mechanism and effects of stabilizers, catalysts and reaction conditions[J]. Chemistry of Materials, 2002, 14: 5 140-5 147.
[31]Comba S, Molfetta A D, Sethi R. A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers[J]. Water Air and Soil Pollution, 2011, 215: 595-607.
[32]Pang Long, Zhou Qingxiang, Su Xianfa. Progress of in-situ modification techniques of nanoscale zero-valent iron[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1 361-1 368.[庞龙, 周庆祥, 苏现伐. 纳米零价铁修饰技术研究进展[J]. 化工进展, 2011, 30(6): 1 361-1 368.]
[33]Johnson R L, Johnson G O, Nurmi J T, et al. Natural organic matter enhanced mobility of nano zerovalent iron[J]. Environmental Science and Technology, 2009, 43: 5 455-5 460.
[34]Saleh N, Kim H J, Phenrat T, et al. Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns[J]. Environmental Science and Technology, 2008, 42: 3 349-3 355.
[35]Gavaskar A, Tatar L, Condit W. Cost and Performance Report Nanoscale Zero-valent Iron Technologies for Source Remediation[R]. CR-05-007-ENV. Port Hueneme, CA: Naval Facilities Engineering Command, 2005.
[36]Wei Y T, Wu S C, Chou C M, et al. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study[J]. Water Research, 2010, 44: 131-140.
[36]Wei Y T, Wu S C, Chou C M, et al. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study[J]. Water Research, 2010, 44: 131-140.
[38]Sirk K M, Saleh N B, Phenrat T, et al. Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models[J]. Environmental Science and Technology, 2009, 43(10): 3 803-3 808.
[39]Kim H J, Phenrat T, Tilton R D, et al. Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers[J]. Environmental Science and Technology, 2009, 43(10): 3 824-3 830.
[40]Joo S H, Feitz A J, Waite T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron[J]. Environmental Science and Technology, 2004, 38: 2 242-2 247.
[41]Bai Shaoyuan, Wang Mingyu. Review on contaminated water remediation by nanoscale zero-valent iron[J]. Water Purification Technology, 2008, 27(1): 35-40, 53.[白少元, 王明玉. 零价纳米铁在水污染修复中的研究现状及讨论[J]. 净水技术, 2008, 27(1): 35-40, 53.]
[42]Devlin J F, Allin K O. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments[J]. Environmental Science and Technology, 2005, 39: 1 868-1 874.
[43][JP2]Xie Y, Cwiertny D M. Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity:Time scale and mechanisms of reactivity loss toward 1, 1, 1, 2-tetrachloroethane and Cr(VI)[J].Environmental Science and Technology, 2012, 46:8 365-8 373.[JP]
[44]Ponder S M, Darab J G, Mallouk T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science and Technology, 2000, 34: 2 564-2 569.
[45]Dries J, Bastiaens L, Springael D, et al. Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems[J]. Environmental Science and Technology, 2005, 39(21): 8 460-8 465.
[46]Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. Journal of Physical Chemistry C, 2007, 111(19): 6 939-6 949.
[47]Dries J, Bastiaens L, Springael D, et al. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems[J]. Environmental Science and Technology, 2004, 38: 2 879-2 884.
[48]Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science and Technology, 2007, 41: 179-184.
[49]Tratnyek P G, Scherer M M, Deng B, et al. Effects of natural organic matter, anthropogenic surfactants, and model quinines on the reduction of contaminations by zero-valent iron[J]. Water Research, 2001, 35(18): 4 435-4 443.
[50]Song H, Carraway E R. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions[J]. Environmental Science and Technology, 2005, 39: 6 237-6 245.
[51]Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water, 1994, 32(6): 958-967.
[52]Scherer M M, S, Valentine R L, et al. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up[J]. Environmental Science and Technology, 2000, 30(3): 363-411.
[53]Van Nooten T, Lieben F, Dries J, et al. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions[J]. Environmental Science and Technology, 2007, 41: 5 724-5 730.
[54]Xiu Z M, Jin Z H, Li T L, et al. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene[J]. Bioresource Technology, 2010, 101: 1 141-1 146.
[55]Kim H J, Phenrat T, Tilton R D, et al. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media[J]. Journal of Colloid and Interface Science, 2012, 370: 1-10.
[56]Tombacz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34: 105-124.
[1] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[5] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[6] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[7] 蒋建军,代立东,李和平,单双明,胡海英,惠科石. 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[8] 徐晓斌,葛宝珠,林伟立. 臭氧生成效率(OPE)相关研究进展[J]. 地球科学进展, 2009, 24(8): 845-853.
[9] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[10] 高霏,刘菲,陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.
[11] 周跃飞,陆现彩,王汝成,陆建军. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23.
[12] 邓琦,刘世忠,刘菊秀,孟泽,张德强. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 2007, 22(9): 976-986.
[13] 刘璟,赵峰华,刘建权. 环境中Al 13的研究进展[J]. 地球科学进展, 2007, 22(3): 305-312.
[14] 张东秋;石培礼;张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778-785.
[15] 郭胜利,张文菊,党廷辉,吴金水,郝明德. 干旱半干旱地区农田土壤NO 3-N深层积累及其影响因素[J]. 地球科学进展, 2003, 18(4): 584-591.
阅读次数
全文


摘要