地球科学进展 ›› 2012, Vol. 27 ›› Issue (7): 733 -746. doi: 10.11867/j.issn.1001-8166.2012.07.0733

综述与评述 上一篇    下一篇

天然气水合物地层渗透率研究进展
刘乐乐,张旭辉,鲁晓兵   
  1. 中国科学院力学研究所,土力学实验室,北京100190
  • 收稿日期:2012-02-17 修回日期:2012-05-22 出版日期:2012-07-10
  • 通讯作者: 刘乐乐(1986-),男,河南鹤壁人,博士研究生,主要从事天然气水合物开采研究.  E-mail:hydrate_liu@163.com
  • 基金资助:

    国家自然科学基金项目“水合物分解引起地层分层破坏的实验室研究”(编号:11102209)和“水合物沉积物物性参数实时测量集成系统的研制”(编号:11072245)资助.

Review on the Permeability of Hydrate-Bearing Sediments

Liu Lele, Zhang Xuhui, Lu Xiaobing   

  1. Laboratory for Soil Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing100190, China
  • Received:2012-02-17 Revised:2012-05-22 Online:2012-07-10 Published:2012-07-10

天然气水合物开采涉及传热、水合物分解相变、多相渗流和地层变形4个物理过程。多相渗流过程伴随着对流传热,影响传热效率;多相渗流过程影响孔隙压力的消散速率,引起有效应力改变而影响地层变形;多相渗流过程影响传热的效率和孔隙压力的消散速率,使温度和压力条件发生变化,影响水合物的分解。多相渗流过程中,某相流体的有效渗透率不仅与该相流体的饱和度有关,还与地层绝对渗透率有关。地层绝对渗透率是多相渗流过程的关键参数之一。概述不同贮存状态水合物、地层孔隙率、水合物饱和度和地层有效应力对地层绝对渗透率影响的研究内容。以国内外天然气水合物地层绝对渗透率研究成果为基础,将来的研究重点主要包括粉细砂、黏土类地层和各向异性地层多相渗流研究,以及地层有效应力对绝对渗透率影响研究。

Multiphase fluid flow, Conductive and convective heat transfer, intrinsic kinetics of hydrate decomposition, and deformation of sediments are four basic physicalchemical processes in the exploitation of gas hydrate. The multiphase fluid flow leads to the pore pressure dissipation and the deformation of hydrate bearing sediments (HBS) accompanied by the convective and conductive heat transfer, and then the hydrate recovery. The absolute permeability of HBS is one of the key controlling factors. The advances in the absolute permeability with the qualitative and experienced relations to pore-scale distribution of hydrate, porosity, saturation of hydrate, and effective stress of HBS are summarized. The main directions and issues on the absolute permeability in the multiphase fluid flow of the HBS exploitation are presented.

中图分类号: 

[1]Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton, FL: CRC Press, 2008.

[2]Kvenvolden K A, Lorenson T D. Global occurrences of gas hydrate[C]Proceedings of the Eleventh(2001) International OFFSHORE and Polar Engineering Conference. Stavanger, 2001.

[3]Ye Liming, Luo Peng, Yang Kehong. Advances in climatic effects study of gas hydrates[J]. Advances in Earth Science, 2011, 26(5): 565-574.[叶黎明,罗鹏, 杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.]

[4]Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187.

[5]Wu Qingbai, Cheng Guodong. Research summarization on natural gas hydrate in permafrost regions[J]. Advances in Earth Science, 2008, 23(2): 111-119.[吴青柏, 程国栋. 多年冻土区天然气水合物研究进展[J]. 地球科学进展, 2008, 23(2): 111-119.]

[6]Gornitz V, Fung I. Potential distribution of methane hydrates in the worlds oceans[J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347.

[7]Kvenvolden K A. Potential effects of gas hydrate on human welfare[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3 420-3 426.

[8]Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?[J]. Earth-Science Reviews, 2004, 66(3/4): 183-197.

[9]Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.

[10]Ruppel C. Tapping methane hydrates for unconventional natural gas[J]. Elements, 2007, 3(3): 193-199.

[11]Ji C, Ahmadi G, Smith D H. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5 801-5 814.

[12]Moridis G J, Collett T S, Dallimore S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal of Petroleum Science and Engineering, 2004, 43(3/4): 219-238.

[13]Zhang X H, Lu X B, Li Q P. Formation of layered fracture and outburst during gas hydrate dissociation[J]. Journal of Petroleum Science and Engineering, 2011, 76(3/4): 212-216.

[14]Lee J, Park S, Sung W. An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme[J]. Energy Conversion and Management, 2010, 51(12): 2 510-2 515.

[15]Moridis G J. Numerical studies of gas production from methane hydrates[J]. SPE Journal, 2003, 8(4): 359-370.

[16]Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47:RG4003,doi:10.1029/2008RG000279.

[17]Helgerud M B. Wave Speeds in Gas Hydrate and Sediments Containing Gas Hydrate: A Laboratory and Modeling Study[D]. Stanford: Stanford University, 2001.

[18]Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate[J]. American Mineralogist, 2004, 89(8/9): 1 221-1 227.

[19]Tohidi B, Anderson R, Clennell M B, et al. Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels[J]. Geology, 2001, 29(9): 867-870.

[20]Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability[J]. Journal of Geophysical Research, 2003, 108(B10),doi:10.1029/2003JB002389.

[21]Kerkar P, Jones K W, Kleinberg R, et al. Direct observations of three dimensional growth of hydrates hosted in porous media[J]. Applied Physics Letters, 2009, 95(2),doi:10.1063/1.3120544.

[22]Hearst J R, Nhilip P H, Paillet F L. Well Logging for Physical Properties[M]. New York: McGraw Hill, 2000.

[23]Scheidegger A E. The Physics of Flow Through Porous Media[M]. Buffalo:University of Toronto Press,1960.

[24]Tsimpanogiannis I N, Lichtner P C. Pore-network study of methane hydrate dissociation[J]. Physical Review E, 2006, 74(5),doi:10.1103/phyRevE.74.056303.

[25]Liang H F, Song Y C, Liu Y, et al. Study of the permeability characteristics of porous media with methane hydrate by pore network model[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 255-260.

[26]Blunt M, King P. Relative permeabilities from 2-Dimensional and 3-Dimensional pore-scale network modeling[J]. Transport in Porous Media, 1991, 6(4): 407-433.

[27]Civan F. Scale effect on porosity and permeability: Kinetics, model, and correlation[J]. Aiche Journal, 2001, 47(2): 271-287.

[28]Kumar A, Maini B, Bishnoi P R, et al. Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media[J]. Journal of Petroleum Science and Engineering, 2010, 70(1/2): 109-117.

[29]Liang H, Song Y, Chen Y, et al. The measurement of permeability of porous media with methane hydrate[J]. Petroleum Science and Technology, 2011, 29(1): 79-87.

[30]Daigle H, Dugan B. Extending NMR data for permeability estimation in fine-grained sediments[J]. Marine and Petroleum Geology, 2009, 26(8): 1 419-1 427.

[31]Berge L I, Jacobsen K A, Solstad A. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration[J]. Journal of Geophysical Research, 1999, 104(B7): 15 415-15 424.

[32]Minagawa H, Sakamoto Y, Komai T, et al. Relation between pore-size distribution and permeability of sediment[C]∥The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan,2009.

[33]Sakamoto Y, Komai T, Miyazaki K, et al. Laboratory-scale experiments of the methane hydrate dissociation process in a porous media and numerical study for the estimation of permeability in methane hydrate reservoir[J]. Journal of Thermodynamics, 2010, 2010,doi:10.1155/2010/452326.

[34]Sakamoto Y, Komai T, Kawamura T, et al. Laboratory-scale experiment of methane hydrate dissociation by hot-water injection and numerical analysis for permeability estimation in reservoir: Part 1—Numerical study for estimation of permeability in methane hydrate reservoir[J]. International Journal of Offshore and Polar Engineering, 2007, 17(1): 47-56.

[35]Sakamoto Y, Komai T, Kawamura T, et al. Modification of permeability model and history matching of laboratory-scale experiment for dissociation process of methane hydrate: Part 2—Numerical study for estimation of permeability in methane hydrate reservoir[J]. International Journal of Offshore and Polar Engineering, 2007, 17(1): 57-66.

[36]Sakamoto Y, Kakumoto M, Miyazaki K, et al. Numerical study on dissociation of methane hydrate and gas production behavior in laboratory-scale experiments for depressurization: Part 3—Numerical study on estimation of permeability in methane hydrate reservoir[J]. International Journal of Offshore and Polar Engineering, 2009, 19(2): 124-134.

[37]Jin Y, Hayashi J, Nagao J, et al. New method of assessing absolute permeability of natural methane hydrate sediments by microfocus X-ray computed tomography[J]. Japanese Journal of Applied Physics Part 1—Regular Papers Brief Communications & Review Papers, 2007, 46(5A): 3 159-3 162.

[38]Seol Y, Kneafsey T J. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media[J]. Journal of Geophysical Research, 2011,116,doi:10.1029/2010JB008040.

[39]Kneafsey T J, Seol Y, Gupta A, et al. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using X-ray Computed Tomography[J]. SPE Journal, 2011, 16(1): 78-94.

[40]Seol Y, Kneafsey T J, Tomutsa L, et al. Preliminary relative permeability estimates of methane hydrate-bearing sand[C]∥TOUGH Symposium. Berkeley, California, USA,2006.

[41]Johnson A,Patil S, Dandekar A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 419-426.

[42]David C, Wong T F, Zhu W L, et al. Laboratory measurement of compaction-induced permeability change in porous rocks—Implications for the generation and maintenance of pore pressure excess in the crust[J]. Pure and Applied Geophysics, 1994, 143(1/3): 425-456.

[43]Pedrosa J, Petrobras O A. Pressure transient response in stress-sensitive formation[C]∥SPE California Regional Meeting. Oakland, California,1986.

[44]Soeder D J, Randolph P L. Porosity, permeability, and pore structure of the tight mesaverde sandstone, Piceance Basin, Colorado[J]. SPE Formation Evaluation, 1987, 2(2): 129-136.

[45]Jiang Haijun, Yan Jienian, Li Rong. Experimental study on fractured reservoir stress-sensitivity[J]. Petroleum Drilling Technology, 2000, 28(6): 32-33.[蒋海军,鄢捷年, 李荣. 裂缝性储层应力敏感性实验研究[J]. 石油钻探技术, 2000, 28(6): 32-33.]

[46]Shi Y L, Wang C Y. Pore pressure generation in sedimentary basins—Overloading versus aquathermal[J]. Journal of Geophysical Research, 1986, 91(B2): 2 153-2 162.

[47]Bernabe Y. The effective pressure law for permeability in Chelmsford granite and Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 267-275.

[48]Shi Yujiang, Sun Xiaoping. Analysis on reservoir stress-sensitivity of Changqing tight clasolite[J]. Petroleum Exploration and Exploitation, 2001, 28(5): 85-87.[石玉江, 孙小平. 长庆致密碎屑岩储集层应力敏感性分析[J]. 石油勘探与开发, 2001, 28(5): 85-87.]

[49]Yu Zhongliang, Xiong Wei, Gao Shusheng, et al. Stress-sensitivity of tight reservoir and its influence on oilfield exploitation[J]. Acta Petrolei Sinica, 2007, 28(4): 95-98.[于忠良, 熊伟, 高树生, 等. 致密储层应力敏感性及其对油田开发的影响[J]. 石油学报, 2007, 28(4): 95-98.]

[50]Zhang Shouliang, Shen Chen, Deng Jin’gen. Experimental study on the law of permeability changing during rock deformation and breaking[J]. Transaction of Rock Mechanics and Engineering,2000, 19(Suppl.): 885-888.[张守良,沈琛, 邓金根. 岩石变形及破坏过程过程中渗透率变化规律的实验研究[J]. 岩石力学与工程学报, 2000, 19(增刊): 885-888.]

[51]Fan Xueping, Xu Xiangrong. Experiment of permeability damage induced by effective stress and mechanism analysis[J]. Petroleum Exploration and Exploitation, 2002, 29(2): 117-119.[范学平, 徐向荣. 地应力对岩心渗透率伤害实验及机理分析[J]. 石油勘探与开发, 2002, 29(2): 117-119.]

[52]Xue Yongchao, Cheng Songlin. Experimental study on permeability changing of low permeability rock with micro-fracture[J]. Petroleum Experiment and Geology, 2007, 29(1): 108-110.[薛永超, 程松林. 微裂隙低渗透岩石渗透率随围压变化实验研究[J]. 石油实验地质, 2007, 29(1): 108-110.]

[53]Lei Q, Xiong W, Yuan C, et al. Analysis of stress sensitivity and its influence on oil production from tight reservoir[C]The 2007 SPE Eastern Regional Meeting. Kentuky, USA, 2007.

[54]Chen Jinhui, Kang Yili, You Lijun, et al. Review and prospect about study on stress-sensitivity of low-permeability reservoir[J]. Natural Gas Geoscience, 2011, 22(1): 182-189.[陈金辉, 康毅力, 游利军, 等. 低渗透储层应力敏感性研究进展及展望[J]. 天然气地球科学, 2011, 22(1): 182-189.]

[55]Li Chuanliang. The relationship equation between stress-sensitive index and rock compressibility[J]. Lithology Hydrocarbon Reservoir, 2007, 19(4): 95-98.[李传亮. 岩石应力敏感指数与压缩系数之间的关系式[J]. 岩性油气藏, 2007, 19(4): 95-98.]

[56]Kang Yili, Zhang Hao, Chen Yijian, et al. Comprehensive study on stress-sensitivity of tight sandstone reservoir in Daniu gas field of Ordos Basin[J]. Natural Gas Geoscience, 2006, 17(3):335-348.[康毅力, 张浩, 陈一健, 等. 鄂尔多斯盆地大牛地气田致密砂岩气层应力敏感性综合分析[J]. 天然气地球科学, 2006, 17(3): 335-348.][57]You Lijun, Kang Yili, Chen Yijian, et al. Influence of water saturation and effective stress on permeability of tight sandstone[J]. Natural Gas Industry, 2004, 24(2):105-107.[游利军, 康毅力, 陈一健, 等. 含水饱和度和有效应力对致密砂岩有效渗透率的影响[J]. 天然气工业, 2004, 24(12): 105-107.]

[58]Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization[J]. Journal of Geophysical Research, 2008, 113(B7),doi:10.1029/2007JB005351.

[59]Mienert J, Vanneste M, Bunz S, et al. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide[J]. Marine and Petroleum Geology, 2005, 22(1/2): 233-244.

[60]Nixon M F, Grozic J L H. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification[J]. Canadian Geotechnical Journal, 2007, 44(3): 314-325.

[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[3] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[4] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[5] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展 *[J]. 地球科学进展, 2014, 29(5): 569-576.
[6] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[7] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[8] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[9] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[10] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[11] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520.
[12] 陈忠,颜文,陈木宏,王淑红,肖尚斌,陆钧,杨华平. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4): 394-400.
[13] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
[14] 吴能友,陈弘,蔡秋蓉,王宏斌. 科学大洋钻探与天然气水合物[J]. 地球科学进展, 2003, 18(5): 753-758.
[15] 高兴军,于兴河,李胜利,段鸿彦. 地球物理测井在天然气水合物勘探中的应用[J]. 地球科学进展, 2003, 18(2): 305-311.
阅读次数
全文


摘要