地球科学进展 ›› 2013, Vol. 28 ›› Issue (1): 17 -23. doi: 10.11867/j.issn.1001-8166.2013.01.0017

院士论坛 上一篇    下一篇

生物地理模型研究进展及在干旱半干旱区的应用
程国栋 1,2, 赵传燕 3*, 许仲林 4,彭守璋 3   
  1. 1.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室, 甘肃兰州730000;2.国家自然科学基金委员会地球科学部,北京100085;3.兰州大学生命科学学院,甘肃兰州730000;4. 新疆大学资源与环境科学学院,绿洲生态教育部重点实验室,新疆乌鲁木齐830002
  • 收稿日期:2012-08-06 修回日期:2012-11-07 出版日期:2013-01-10
  • 通讯作者: 赵传燕(1963-),女,山东曹县人,教授,主要从事旱区生态水文过程研究. E-mail:nanzhr@lzb.ac.cn
  • 基金资助:

    国家自然科学基金项目“黑河流域上游森林草地生态系统生态—水文过程的相互作用机制研究”(编号:91025015)资助.

Advances in Researches of Biogeographic Model and Its Applicationin the Arid and Semi-Arid Regions, China

Cheng Guodong 1,2, Zhao Chuanyan 3, Xu Zhonglin 4, Peng Shouzhang 3   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou730000, China;
    2.Department of Earth Sciences, National Natural Science Foundation of China, Beijing100085, China;
    3.School of Life Sciences, Lanzhou University, Lanzhou730000, China; 4.College of Resource & Environmental Science, Xinjiang University,  Key Laboratory of Oasis Ecology Ministy of Education, Urumqi830002,China
  • Received:2012-08-06 Revised:2012-11-07 Online:2013-01-10 Published:2013-01-10

生物地理模型是实现生态保护计划的重要工具。从生物地理模型研究的背景出发,论述了它的发展是科学和实践的需求,分析了基于生态位理论的生物地理模型发展所面临的挑战,特别是数据的获取和关键变量的选择,展望了生物地理模型的发展前景,并对其在干旱半干旱区的应用进行了综述,旨在理解生物地理模型在陆面过程研究和生态恢复中的重要性,以期推动生物地理过程与之相关过程的耦合模拟研究。

Biogeographic model has been used as an important tool for conservation planning. We discuss the background of biogeographic model development and find it has mostly contributed to both fundamental and applied research in biogeography and ecology. And its development is in need of theory and application. The challenges are discussed in this paper, especially when the problems happened during the model application such as false absences and false presences in species data, and key environmental variables selection. We prospect the development of biogeographic model in the future: it needs to couple climatic model and biogeochemical model. We selectively review the literature of biogeographic studies in arid and semiarid regions of China. It is very essential to understand the significance of biogeographic model for depicting biogeographic processes and conservation planning application. Our objective is to promote the modeling researches courses about biogeographic processes coupling with other relative processes.

中图分类号: 

[1]Fu Bojie, Xu Yanda, Lü Yihe. Scale characteristics and coupled research of landscape pattern and soil and water loss[J]. Advances in Earth Science, 2010, 25(7): 673-681.[傅伯杰, 徐延达, 吕一河. 景观格局与水土流失的尺度特征与耦合方法[J]. 地球科学进展, 2010, 25(7): 673-681.]

[2]Wang Youmin. Study on Integrated Controlling of Water and Soil Loss and Its Benefits and Cost in Hilly and Gully Area in the Loess Plateau[M]. Beijing: Chinese Forestry Publishing House, 1990.[王佑民. 黄土高原沟壑区综合治理及其效益研究 [M]. 北京: 中国林业出版社, 1990.]

[3]Liang Yimin. Discussing issues about establishing vegetation on Loess Plateau according to the law of community[J]. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(5): 26-31.[梁一民. 从植物学群落学原理谈黄土高原植被建造的几个问题[J]. 西北植物学报, 1999, 19(5): 26-31.]

[4]Wang Shengping, Zhang Zhiqiang, Zhang Jianjun, et al. Modeling the effects of topography on the spatial distribution of secondary species in a small watershed in the Gully region on the Loess Plateau, China[J]. Acta Ecologica Sinica, 2010,

30(22): 6 102-6 112.[王盛萍, 张志强, 张建军, 等. 黄土残塬沟壑区流域次生植被物种分布的地形响应 [J]. 生态学报, 2010, 30(22): 6 102-6 112.]

[5]Wu Qinxiao, Zhao Hongyan. Hydro-ecological effects of forest and suitable index of vegetation coverage[J]. Bulletin of Soil and Water Conservation, 2000, 20: 32-34.[吴钦孝, 赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J]. 水土保持通报, 2000, 20: 32-34.]

[6]Franklin J. Predictive vegetation mapping: Geographic modeling of bio-spatial pattern in relation to environmental gradients[J]. Progess in Physical Geograpy, 1995, 19(4): 474-499.

[7]Zhao Chuanyan, Feng Zhaodong, Nan Zhongren, et al. Modelling of potential vegetation in Zulihe River Watershed of the west-central Loess Plateau[J]. Acta Geographic Sinica, 2007, 62(1): 52-61.[赵传燕, 冯兆东, 南忠仁, 等. 黄土高原祖厉河流域潜在植被分布模拟研究[J]. 地理学报,2007,62(1): 52-61.]

[8]Araújo M B, Guisan A. Five (or so) challenges for species distribution modeling [J]. Journal of Biogeography, 2006, 33:1 677-1 688.

[9]Peterson A T. Uses and requirements of ecological niche models and related distributional models[J]. Biodiversity Informatics, 2006, 3: 59-72.

[10]Wen Zhongming, He Xiaohui, Jiao Feng, et al. The predictive distribution of Stipa bungeana in Yanhe River catchment: GAM model and its application[J]. Acta Ecologica Sinica, 2008, 28(1): 192-201.[温仲明, 赫晓慧, 焦峰, 等. 延河流域本氏针茅( Stipa bungeana) 分布预测——广义相加模型及其应用[J]. 生态学报, 2008, 28(1):192-201.]

[11]Austin M P. An ecological perspective on biodiversity investigations: Examples from Australian eucalypt forests[J]. Annals of the Missauri Botanical Garchen,1998, 85: 2-17.

[12]Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology[J]. Ecological Modelling, 2000, 135:147-186.

[13]Elith J, Burgman M A. Habitat models for PVA[M]∥Brigham C A, Schwanz M W, eds. Population Viability in Plants.Heidelberg: Springer, 2002.

[14]Scott J M, Heglund P J, Samson F, et al. Predicting Species Occurrences: Issues of Accuracy and Scale[M]. Covelo, CA: Island Press, 2002.

[15]Lischke H, Guisan A, Fischlin A, et al. Vegetation responses to climate change in the Alps-Modeling studies[M]∥Cebon P, Dahinden V, Davies H C, et al. eds. A View from the Alps: Regional Perspectives on Climate Change. Boston: MIT Press, 1998: 309-350.

[16]Kienast F, Brzeziecki B, Wildi O. Long-term adaptation potential of Central European mountain forests to climate change: A GIS-assisted sensitivity assessment [J]. Forest Ecology and Management, 1996, 80: 133-153.

[17]Kienast F, Wildi O, Brzeziecki B. Potential impacts of climate change on species richness in mountain forests—An ecological risk assessment[J].Biological Conservation, 1998, 83: 291-305.

[18]Peters R H. A Critique for Ecology [M]. London: Cambridge University Press, 1991.

[19]Grinnell J. Field tests of theories concerning distributional control [J]. The American Naturalist, 1917, 51: 115-128.

[20]Elton C, Sidgwick Jackson. Animal Ecology [M]. London: Cambridge University Press, 1927.

[21]Hutchinson G E. Concluding remarks[J].Cold Spring Harbor Symposium on Quantitative Biology, 1957, 22: 415-427.

[22]Colwell R K, Futuyma D G. On the measurement of niche breadth and overlap [J]. Ecology, 1971, 52(4): 567-576.

[23]Wang G, Zhao S L, Zhang P Y, et al. On the definition of niche and the improved formula for measuring niche overlap [J]. Acta Ecologica Sinica, 1984, 4(2): 120-127.

[24]Leibold M A. The niche concept revisited: Mechanistic models and community context [J]. Ecology, 1995, 76: 1 371-1 382.

[25]Peng Shouzhang, Zhao Chuanyan, Xu Zhonglin, et al. Potential distribution of Qinghai spruce and assessment of its growth status in the upper reaches of the Heihe River in the Qilian Mountains of China [J]. Chinese Journal of Plant Ecology, 2011, 35(6): 605-614.[彭守璋, 赵传燕, 许仲林, 等. 黑河上游祁连山区青海云杉生长状况及其潜在分布区的模拟[J]. 植物生态学报, 2011, 35(6): 605-614.]

[26]Chase J M, Leibold M A. Ecological Niches: Linking Classical and Contemporary Approaches [M]. Chicago: The University of Chicago Press, 2003.

[27]Hirzel A H, Hausser J, Chessel D, et al. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7):2 027-2 036.

[28]Walker P A, Cocks K D. HABITAT: A procedure for modeling a disjoint environmental envelope for a plant or animal species [J]. Global Ecology and Biogeography Letters, 1991, 1: 108-118.

[29]Stockwell D R B, Noble I R. Induction of sets of rules from animal distribution data: A robust and informative method of analysis[J]. Mathematics and Computers in Simulation, 1992, 33: 385-390.

[30]Zhao Chuanyan, Nan Zhongren, Cheng Guodong, et al. GIS-assisted modelling of the spatial distribution of Qinghai spruce in the Qilian Mountain, Northwestern China based on biophysical parameters[J]. Ecological Modelling, 2006, 191: 487-500.

[31]Hirzel A H, Le Lay G. Habitat suitability modelling and niche theory[J]. Journal of Applied Ecology, 2008, 45: 1 372-1 381.

[32]Braunisch V, Bollmann K, Graf R F, et al. Living on the edge—Modelling habitat suitability for species at the edge of their fundamental niche[J]. Ecological  Modelling, 2008, 214: 153-167.

[33]Olivier F, Wotherspoon S J. Modelling habitat selection using presence-only data: Case study of a cononial hollow nesting bird, the snow petrel[J]. Ecological  Modelling, 2006, 195: 195-204.

[34]Keuchel J, Naumann S, Heiler M, et al. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data[J]. Remote Sensing of Environment, 2003, 86(4): 530-541.

[35]Cheng Guodong, Zhao Chuanyan. Inland river basin of the arid regions, China[J]. Advances in Earth Science, 2008, 23(10): 1 005-1 012.[程国栋, 赵传燕. 干旱区内陆河流域生态水文综合集成研究[J]. 地球科学进展, 2008, 23(10): 1 005-1 012.]

[36]Guisan A, Thuillier W. Predicting species distribution: Offering more than simple habitats models[J]. Ecology Letters, 2005, 8: 993-1 009.

[37]Xu Zhonglin, Zhao Chuanyan, Feng Zhaodong. Species potential distribution models and evaluation based on dissimilarity index of variables of Qinghai spruce (Picea crassifolia) in Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(4):1-9.[许仲林, 赵传燕, 冯兆东. 物种分布模型与变量相异指数评价[J].兰州大学学报:自然科学版, 2011, 47(4):1-9.]

[38]Manly B F, McDonald L L, Thomas D L, et al. Resource Selection by Animals: Statistical Design and Analysis for Field Studies[M]. Dordrecht: Kluwer Academic Publishers, 2002.

[39]Johnson C J, Nielsen S E, Merrill E H, et al. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods[J]. Journal of Wildlife Management, 2006, 70(2): 347-357.

[40]Guichon M L, Cassini M H. Local determinants of coypu distribution along the Lujan River, east-central Argentina[J]. Journal of Wildlife Management, 1999, 63(3): 895-900.

[41]Rydgren K, kland R H, kland T. Species response curves along environmental gradients. A case study from SE Norwegian swamp forests[J]. Journal of Vegetation Science, 2003, 14(6): 869-880.

[42]Calenge C, Darmon G, Basille M, et al. The factorial decomposition of the Mahalanobis distances in habitat selection studies[J]. Ecology, 2008, 89(2): 555-566.

[43]Dymond C C, Johnson E A. Mapping vegetation spatial patterns from modeled water, temperature and solar radiation gradients[J]. Journal of Photogrammetry and Romote Sensing, 2002, 57: 69-85.

[44]Iverson L R, Dale M E, Scott T, et al. A GIS-derived integrated moisture index to predict forest composition and productivity of ohio forests (U.S.A.)[J]. Landscape Ecology, 1997, 12: 331-348.

[45]Brown D G. Predicting vegetation types at treeline using topography and biophysical disturbance variables[J]. Journal of Vegetation Science, 1994, 5: 641-656.

[46]Bolstad P V, Swank W, Vose J. Predicting southern appalachian overstory vegetation with digital terrain data[J]. Landscape Ecology, 1998, 13: 271-283.

[47]Franklin J. Predicting the distribution of shrub species in Southern California from climate and terrain-derived variables[J]. Journal of Vegetation Science, 1998, 9: 733-748.

[48]Pfeffer K, Pebesma E J, Burrough P A. Mapping alpine vegetation using vegetation observations and topographic attributes[J]. Landscape Ecology, 2003, 18: 759-776.

[49]Cao Mingkui, Li Kerang. Perspective on terrestrial ecosystem-climate interaction [J]. Advances in Earth Science, 2000, 15(4): 446-452.[曹明奎, 李克让. 陆地生态系统与气候相互作用的研究进展[J]. 地球科学进展, 2000, 15(4): 446-452.]

[50]Salisbury E J. The geographical distribution of plants in relation to climatic factors [J]. The Geographical Journal,1926, 57: 312-335.

[51]Holdridge L R. Determination of world plant formation from simple climatic data [J]. Science, 1947, 105: 367-369.

[52]Cain S A. Foundations of Plant Geography[M]. New York: Harper Brothers,1944.

[53]MacArthur R H. Geographical Ecology: Patterns in the Distribution of Species [M]. Vnited Kingdom: Princeton University Press, 1972.

[54]Walter H. Vegetation of the Earth and Ecological Systems of Geobiosphere[M]. Heidelberg: Springer, 1985.

[55]Woodward F I. Climate and Plant Distribution[M]. Cambridge: Cambridge University Press, 1987.

[56]Ellenberg H. Vegetation Ecology of Central Europe[M]. Cambridge: Cambridge University Press, 1988.

[57]Flato G M, Boer G J, Lee W G, et al. The Canadian Centre for climate modelling and analysis global coupled model and its climate[J]. Climate Dynamics, 2000, 16: 451-467.

[58]McFarlane N A, Boer G J, Blanchet J P, et al. The Canadian Climate Centre second-generation general circulation model and its equilibrium climate[J]. Journal of Climate, 1992, 5: 1 013-1 044.

[59]Hugall A, Moritz C, Moussalli A, et al. Reconciling paleodistribution models and comparative phylogeography in the wet tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875)[C]∥Proceedings of the National Academy of Sciences of the United States of America. 2002, 99: 6 112-6 117.

[60]Martínez-Meyer E, Peterson A T. Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition[J]. Journal of Biogeography, 2006, 33: 1 779-1 789.

[61]Martínez-Meyer E, Peterson A T, Hargrove W W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity[J]. Global Ecology and Biogeography, 2004, 13: 305-314.

[62]Zou Songbing, Cheng Guodong, Xiao Honglang, et al. Holocene natural rhythms of vegetation and present potential ecology in the Western Chinese Loess Plateau[J]. Quaternary International, 2009, 194: 55-67.

[63]Stott P A, Tett S F B, Jones G S, et al. External control of twentieth century temperature variations by natural and anthropogenic forcing[J]. Science, 2000, 15: 2 133-2 137.

[64]Tett S F B, Jones G S, Stott P A, et al. Estimation of Natural and Anthropogenic Contributions to 20th Century[R]. Hadley Centre Tech Note Hadley Centre for Climate Prediction and Response, Meteorological Office, RG12 2SY, UK, 2000.

[65]Mao Liuxi, Sun Yanling, Yan Xiaodong. Modeling of carbon cycling in terrestrial ecosystem: A review[J].Chinese Journal of Applied Ecology,2006, 17(11): 2 189-2 195.[毛留喜, 孙艳玲, 延晓冬. 陆地生态系统碳循环模型研究概述[J].应用生态学报, 2006, 17(11): 2 189-2 195.]

[66]Parton W J, Scurlock J, Ojima D,et al.Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J].Global Biogeochem Cycle,1993, 7: 785-809.

[67]McGuire A D, Melillo J M, Kicklighter D W, et al.Equilibrium responses of soil carbon to climate change empirical and process based estimates[J].Journal of Biogeography,1995, 22: 785-796.

[68]Kindermann J, Ludeke M K B, Badeck F W,et al.Structure of a global and seasonal carbon exchange model for the terrestrial biosphere[J].Water Air and Soil Pollution,1993,70: 675-684.

[69]Running S W, Hunt E R J. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC and an application for global scale models[C]∥Ehleringer J R, Field C B, eds. Scaling Physiological Processes: Leaf to Globe. SanDiego: Academic Press,1993:141-158.

[70]Tao Bo, Ge Quansheng, Li Kerang, et al. Progress in the studies on carbon cycle in terrestrial ecosystem[J]. Geographical Research, 2001, 20(5): 564-575.[陶波, 葛全胜, 李克让, 等. 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5): 564-575.]

[71]Qi Pengcheng, Zhao Chuanyan, Feng Zhaodong. GIS- and machine learning-based modeling of the potential distribution of broadleaved deciduous forest in the Chinese Loess Plateau[J]. GIScience & Remote Sensing, 2010, 47(1): 99-114.

[72]Zou Songbing. Potential Vegetation Modeling in the Chinese Loess Plateau[D]. Lanzhou: Lanzhou University, 2006.[邹松兵. 中国黄土高原潜在植被模拟[D]. 兰州: 兰州大学, 2006.]

[73]Zhao Chuanyan, Li Shoubo, Jia Yanhong, et al. Dynamic changes of groundwater level and vegetation in water table fluctuant belt in lower reaches of Heihe River: Coupling simulation[J]. Chinese Journal of Applied Ecology, 2008, 19 (12) :2 687-2 692.[赵传燕, 李守波, 贾艳红, 等. 黑河下游地下水波动带地下水与植被动态耦合模拟[J]. 应用生态学报, 2008, 19 (12) : 2 687-2 692.]

[74]Xu Zhonglin, Zhao Chuanyan, Feng Zhaodong. A study of the impact of climate change on the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains[J]. Acta Ecologica Sinica, 2009, 29: 278-285.

[1] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[2] 孙和平, 孙文科, 申文斌, 申重阳, 祝意青, 付广裕, 吴书清, 崔小明, 陈晓东. 地球重力场及其地学应用研究进展——2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460.
[3] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[4] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[5] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[6] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[7] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[8] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[9] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
[10] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[11] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[12] 龚凌枫, 唐川, 李宁, 陈明, 杨成长, 蔡英桦. 急陡沟道物源起动模式及水土耦合破坏机制分析[J]. 地球科学进展, 2018, 33(8): 842-851.
[13] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[14] 张平松, 孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 2017, 32(6): 577-588.
[15] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
阅读次数
全文


摘要