地球科学进展 ›› 2012, Vol. 27 ›› Issue (12): 1344 -1352. doi: 10.11867/j.issn.1001-8166.2012.12.1344

研究论文 上一篇    下一篇

环境同位素特征对滨海岩溶地区海水入侵过程的指示意义
杨吉龙 1,韩冬梅 2*,苏小四 3,肖国强 1,赵长荣 1,宋庆春 4,汪娜 5   
  1. 1.天津地质矿产研究所,天津300170;2.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京100101;3.吉林大学环境与资源学院,吉林长春130021;4.辽宁水文地质工程地质勘察院,辽宁大连116037;5.河北省地矿局第二地质大队,河北唐山063000
  • 收稿日期:2012-03-20 修回日期:2012-06-24 出版日期:2012-12-10
  • 通讯作者: 韩冬梅(1978-),女,新疆焉耆人,助理研究员,主要从事流域水循环与地下水水文过程研究. E-mail:handm@igsnrr.ac.cn
  • 基金资助:

    中国科学院地理科学与资源研究所“一三五”战略科技计划前沿探索项目“北方滨海岩溶地区海水入侵机理研究”(编号:2012QY007);中国地质调查局项目“天津滨海新区海岸带环境地质调查评价”(编号:1212010814004)资助.

Environmental Tracers (δ 2H-δ 18O, δ 34S, δ 13C) as Indicators of Seawater Intrusion Processes in the Coastal Karst Area

Yang Jilong 1, Han Dongmei 2, Su Xiaosi 3, Xiao Guoqiang 1,Zhao Changrong 1, Song Qingchun 4,  Wang Na 5   

  1. 1.Tianjin Institute of Geology and Mineral Resources, Tianjin300170, China; 
    2.Key Laboratory of Water Cycle & Related Land Sarface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China;
    3.College of Environment and Resources,Jilin University, Changchun130026, China;
    4.Liaoning Investigation Insititute of Hydrogeology and Engineering Geology, Dalian116037, China;
    5.No.2 Geological Brigade of Hebei Geology and Mineral Exploration Bureau, Tangshan063000, China
  • Received:2012-03-20 Revised:2012-06-24 Online:2012-12-10 Published:2012-12-10

大连大魏家水源地位于中国北方典型滨海岩溶地区。近30年来,地下淡水的不合理开采造成的地下水位降落漏斗引发了严重的海水入侵。以大魏家水源地为研究对象,通过大量的水文地质调查和水化学及同位素采样测试分析,探讨海水入侵形成的水动力条件,通过分析滨海岩溶含水层中地下水主要水化学和多种同位素(δ2H-δ18O,δ34S,δ13C)组成特征,识别了海水入侵过程中发生的主要水文地球化学作用,并对其进行了定量模拟,从而阐明了岩溶含水层中的海水入侵机理。研究结果表明:大连大魏家海水入侵主要通道为大魏家地区存在的导水断裂、岩溶裂隙以及第四系松散地层。对δ2H-δ18O同位素的组成分析表明,研究区地下水主要来自大气降水补给,结合Cl-浓度分布,认为除海水入侵淡水含水层后增加了地下水中的盐分外,浅层地下水的蒸发也对地下水中盐分的累积起到了重要作用。根据不同水体中δ34SSO4,δ13CHCO3等同位素特征,结合水化学成分(如SO2-4,Cl-)分析认为,研究区微咸水和咸水并不是地下水淡水和海水简单混合而成。利用反向水文地球化学模拟揭示了控制滨海岩溶含水层中水化学演化的主要水文地球化学反应有方解石、蒙脱石和石膏的溶解作用,伊利石的沉淀作用以及Ca-Na离子交换作用,伴随着CO2的释放。

Daweijia wellhead field is located at the coastal karst area in north China. Unsustainable groundwater exploitation in recent decades has resulted in severe seawater intrusion in this area. Employing hydrogeological investigations, hydrodynamic monitoring and hydrogeochemical and isotope data analysis, this study analyzed the groundwater hydrodynamic conditions partially controlling seawater intrusion processes, and delineated the mechanism of seawater intrusion in this area. The characteristics of major hydrochemical composition and multi-stable-isotopes (δ2H-δ18O, δ34S, δ13C) in groundwater have been used to identify the main hydrogeochemical behaviors; these were also quantitatively simulated by inverse hydrogeochemical reactions. Seawater intrusion occurs primarily along the permeable fault zone, karst fissures and loose Quaternary strata. The compositions of  δ18O and  δ2H in groundwater show that the critical groundwater recharge source is precipitation. Combined with the Cl- distribution, it can be identified that besides salinity increase accompanying seawater intrusion into fresh water aquifer, evaporation of shallow groundwater also plays an important role in the accumulation of salt in groundwater. Joint analysis of δ34SSO4, δ13CHCO3composition with special anions (e.g., SO2-4,Cl-) reveals that brackish and saline groundwater are not the results of a simple mixture between seawater and fresh groundwater. Inverse hydrogeochemical modeling can be used to reveal the main hydrogeochemical reactions controlling the hydrochemical evolution of coastal karst aquifers in the study area, including the dissolution of calcite, montmorillonite and gypsum, the precipitation of illite and Ca-Na cation exchange with CO2 extrication.

中图分类号: 

[1]Amer A M. Saltwater intrusion in coastal aquifers[J].Water Resources Management, 1995,( 2):521-529.



[2]Grassi S, Cortecci G, Squarci P. Groundwater resource degradation incoastal plains:The example of the Cecina area (Tuscany-Central Italy) [J].Applied Geochemistry, 2007, 22 (11):2 273-2 289.



[3]Han D M, Claus Kohfahl, Song Xianfang, et al.Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China [J]. Applied Geochemistry , 2011, (26) :863-883.



[4]Sherif M M, Hamza K I. Mitigation of seawater intrusion by pumping brackish water[J]. Transport Porous Media, 2001,(43) :29-44.



[5]Yin Huaining, Zhang Dejun. Impact of seawater invasion on soil ecology of Daliang City [J].Research of Soil and Water Conservation, 2007, 14(3):5-6.[尹怀宁,张德君.大连市地下水海水污染对土壤生态影响研究初报[J].水土保持研究,2007,14(3):5-6.]



[6]Sheng Xuebin, Dai Zhaohua, Yang Minghua. Seawater intrusion status and prevention proposal for the Yellow Sea and Bohai Sea[J] .Acta Ecologica Sinica,1996,16(4):418-426.[盛学斌,戴昭华, 杨明华. 大渤海区海水入侵态势与防治构想[J].生态学报, 1996,16(4):418-426.]



[7]Wu Qiang, Jin Yujie,Li Dean, et al. The mechanisms of seawater intrusion of karst groud water system in Daweijia, Dalian City and the countermeasures of its control [J]. The Chinese Journal of Geological Hazard and Control,1994,5(1):64-68. [武强, 金玉洁, 李德安, 等.大连大魏家岩溶地下水系统海水入侵机理与对策[J].中国地质灾害与防治学报,1994,5(1):64-68.]



[8]Zou Shengzhang, Zhu Yuanfeng, Chen Honghan, et al .Chemistry process of seawater intrusion in littoral karst area of Daweijia, Daliang City[J]. Marine Geology and Quaternary Geology,2004,24(1):61-67. [邹胜章,朱远峰,陈鸿汉,等.大连大魏家滨海岩溶区海水入侵化学过程[J].海洋地质与第四纪地质,2004,24(1):61-67.]



[9]Xiao Guoqiang,Wang Hong,Zhao Changrong, et al.Assessment of Vulnerability and Investigation of Environmental Geology in the Key Section of Circum-Bohai-Sea Region[R]. Tianjin: Tianjin Institute of Geology and Mineral Resources,2007.[肖国强,王宏,赵长荣,等.环渤海地区重点地段环境地质调查及脆弱性评价报告[R].天津:天津地质矿产研究所,2007.]



[10]Shen Zhaoli, Zhu Wanhua, Zhong Zuoshen. Fundamentals of Hydrogeology[M].Beijing:Geological Publishing House, 1993.[沈照理,朱婉华,钟佐燊.水文地球化学基础[M]. 北京:地质出版社,1993.]



[11]Xue Y Q, Wu J C, Ye S J, et al. Hydrogeological and hydrogeochemicalstudies for salt water intrusion on the South Coast of Laizhou Bay [J]. China Ground Water ,2000,38:38-45.



[12]Zakhem B A, Hafez R. Environmental isotope study of seawater intrusion in the coastal aquifer (Syria)[J].Environmental Geology ,2007, 51:1 329-1 339.



[13]Bear J, Cheng A H D, Sorek S, et al. Seawater Intrusion in Coastal Aquifers-Concepts, Methods and Practices[M]. Netherlands :Kluwer Academic, 1999.



[14]Hoefs J. Stable Isotope Geochemistry (5th edition)[M].Berlin:Spinger-Verlag, 2004.



[15]Clark I, Fritz P. Environmental Isotopesin Hydrogeology[M].Springer ,1997.



[16]IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database (http:∥www.naweb.iaea.org/napc/ih/IHS_resources_gnip.html)[DB].Vienna, 2006.



[17]Rees C E,Jenkins W J, Monster J. The sulphur isotopic composition of ocean water sulfate[J]. Geochimica et  Cosmochimica Acta, 1978, 42:377-381.



[18]Xiao Huayun, Liu Congqiang, Li Siliang. Geochemical characteristics of sulfur and nitrogen isotopic compositions in rains of Guiyang in summer[J].Geochimica, 2003, 32(3):248-254. [肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学,2003,32(3):248-254. ]



[19]Shi Z S, Chen K Y, Shi J, et al. Sulfur isotopic composition and its geological significance of the paleogene sulfate rock deposited in Dongpu Depression[J]. Petroleum Exploration and Develop, 2004,31 (6): 44-46.



[20]Dotsika E, Leontiadis I, Poutoukis D, et al. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece[J]. Journal Volcanology Geothermal Research, 2006,154(3/4):237-250.



[21]Lang Yunchao, Liu Congqiang, Satake H. δ37Cl and δ34S variations of Cl- and SO2-4 in groundwater and surface water of Guiyang Area, China[J]. Advances in Earth Science, 2008, 23(2):152-159.[朗赟超,刘丛强,Satake H. 贵阳地表水—地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2):152-159. ] 



[22]Appelo C A J,Postma D. Geochemistry,Groundwater and Pollution[M]. Rotterdam: A. A. Balkema,1993.



[23]Levin I, Kromer B, Wngenbach D, et al. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica[J].Tellus, 1987, 39B(1/2):89-95.



[24]Tao Zhen, Shen Chengde, Yi Weixi, et al. Progresses in the study of carbon isotopes tracing of the soil carbon dynamics[J].Advances in Earth Science, 2004, 19(5):793-800.[陶贞,沈承德,易惟熙, 等.土壤动力学同位素示踪研究进展[J].地球科学进展,2004,19(5):793-800.]



[25]Chen Jinshi, Chen Zhengwen. Carbon Isotope Geology Conspectus[M].Beijing:Geology Publishing House, 1983.[陈锦石,陈正文.碳同位素地质学概论[M].北京:地质出版社,1983.]



[26]Amiotte-Suchet P, Aubert D, Probst J L, et al.δ13C pattern of dissolved,inorganic carbon in a small granitic catchment: The strengbachease study(Vosges mountains, France)[J].Chemical Geology, 1999, 159(1/4): 129-145.



[27]Telmer K, Veizer J. Carbon fluxes, pCO2 and substrate,weathering in a large northern river basin, Canada: Carbon isotopes perspectives[J].Chemical Geology, 1999, 159(1/4):61-86.



[28]Palmer S M, Hope D, Billett M F, et al. Sources of organic and inorgan ic carbon in a headwater stream:Evidences from carbon isotopic studies[J]. Biogechemistry, 2001, 52(3):321-338.



[29]Plummer L N, Prestemon E C, Parkhurst D L. An Interactive code(NETPATH)for Modeling Net Geochemical Reactions Along A Flow Path[M].U.S.Geological Survey,1994.

[1] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[2] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[3] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[4] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[5] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[6] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[7] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[8] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[9] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[10] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[11] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[12] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[13] 刘菲, 陈亮, 王广才, 陈鸿汉. 地下水渗透反应格栅技术发展综述[J]. 地球科学进展, 2015, 30(8): 863-877.
[14] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[15] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
阅读次数
全文


摘要