地球科学进展 ›› 2012, Vol. 27 ›› Issue (12): 1295 -1307. doi: 10.11867/j.issn.1001-8166.2012.12.1295

综述与评述    下一篇

区域蒸散发遥感估算方法及验证综述
张荣华, 杜君平, 孙睿*   
  1. 遥感科学国家重点实验室, 北京师范大学地理学与遥感科学学院, 环境遥感与数字城市北京市重点实验室, 北京100875
  • 收稿日期:2012-07-11 修回日期:2012-08-31 出版日期:2012-12-10
  • 通讯作者: 孙睿(1970-),男,甘肃通渭人,教授,主要从事植被生产力与地表通量的遥感应用研究. E-mail:sunrui@bnu.edu.cn
  • 基金资助:

    国家自然科学基金项目“遥感数据与植被生态系统碳循环模型的同化研究”(编号:40971221);欧盟计划FP7-ENV-2007-1“Coordinated Asia-European long-term observing system of Qinghai-Tibet Plateau hydro-meteorological processes and the Asian-monsoon system with ground satellite image data and numerical simulations”(编号:212921)资助.

Review of Estimation and Validation of  Regional Evapotranspiration Based on Remote Sensing

Zhang Ronghua, Du Junping, Sun Rui   

  1. State Key Laboratory of Remote Sensing Science,  School of Geography, Beijing Normal University,Beijing Key Laboratory of Environmental Remote Sensing and City Digitalization, Beijing100875, China
  • Received:2012-07-11 Revised:2012-08-31 Online:2012-12-10 Published:2012-12-10

蒸散发是地表水热平衡的重要参量,也是农作物生长状况和产量的重要指标。与传统的蒸散发计算方法相比,遥感技术经济、适用、有效,在非均匀下垫面的区域蒸散发监测上具有明显的优越性。系统回顾了5种常用的区域蒸散发遥感估算方法,包括经验统计模型、与传统方法相结合的遥感模型、地表能量平衡模型、温度—植被指数特征空间模型以及陆面过程与数据同化等,分析了这些模型的最新研究进展及各自的优缺点,并对地表蒸散发的地面验证方法进行了概述。最后简要分析了区域蒸散发遥感估算存在的问题,并展望了其未来发展趋势。多源遥感数据协同反演与非遥感参数遥感化、蒸散发模型改进与多模型集成、陆面过程与遥感数据同化、遥感蒸散发估算及地面验证中的尺度问题与空间代表性问题研究等将会是未来区域蒸散发研究中的重点发展方向。

Evapotranspiration (ET) is an important term of surface water-energy balance, and is a significant indicator of crop growth conditions and yield. Compared to the traditional evapotranspiration calculation methods, remote sensing technology is relatively economic, applicable and effective, and it has obvious advantages in monitoring evapotranspiration of heterogenous surface. Many remotely sensed data based models have been developed for regional evapotranspiration estimation during past years. Several frequently-used evapotranspiration models based on remote sensing data and their latest research progress were systematically reviewed first, which were categorized into five types: empirical statistical models, remote sensing models based on conventional methods, surface energy balance models, temperature-vegetation index feature space models, and land surface models and data assimilation. And then, different validation methods including lysimeter at several meters scale, bowen ratio and eddy flux tower at tens to hundreds of meters scale, Large Aperture Scintillometer (LAS) at hundreds to thousands of meters scale, and runoff observation at basin scale were summarized and analyzed. Finally, some existing problems, possible solutions of estimating regional evapotranspiration by remote sensing were analyzed in brief, and the research tendency was prospected. Synergic inversion of surface parameters based on multi-source remote sensing data, evapotranspiration model improvement and multi-model integration, land surface process and data assimilation, the spatial representativeness of observed latent flux and scale problem in the evapotranspiration estimation and validation need to be further studied in the future.

中图分类号: 

[1]Xin Xiaozhou, Tian Guoliang, Liu Qinhuo. A review of researches on remote sensing of land surface evapotranspiration[J]. Journal of Remote Sensing, 2003,7(3): 233-240.[辛晓洲, 田国良, 柳钦火. 地表蒸散定量遥感的研究进展[J]. 遥感学报, 2003,7(3): 233-240.]

[2]Guo Xiaoyin, Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research [J]. Advances in Earth Science, 2004,19(1): 107-114.[郭晓寅, 程国栋. 遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004,19(1): 107-114.]

[3]Si Jianhua, Feng Qi, Zhang Xiaoyou, et al. Research progress on surveying and calculation of evapotranspiration of plants and its prospects [J]. Advances in Water Science, 2005, 16(3): 450-459.[司建华, 冯起, 张小由, 等. 植物蒸散耗水量测定方法研究进展[J]. 水科学进展, 2005, 16(3): 450-459.]

[4]Gao Yanchun, Long Di. Progress in models for evapotranspiration estimation using remotely sensed data [J]. Journal of Remote Sensing, 2008, 12(3): 515-528.[高彦春, 龙笛. 遥感蒸散发模型研究进展[J]. 遥感学报, 2008, 12(3): 515-528.]

[5]Yu Tengfei, Feng Qi, Si Jianhua, et al. Estimating terrestrial ecosystems evapotranspiration: A review on methods of integrateing remote sensing and ground observations [J]. Advances in Earth Science, 2011, 26(12): 1 260-1 268.[鱼腾飞, 冯起, 司建华, 等. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12) : 1 260-1 268.]

[6]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements [J]. Water Resources Research, 1977, 13(3): 651-656.

[7]Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data [J]. International Journal of Remote Sensing, 1983, 4(2): 371-383.

[8]Carlson T N, Capehart W J, Gillies R R. A new look at the simplified method for remote sensing of daily evapotranspiration [J]. Remote Sensing of Environment, 1995, 54(2): 161-167.

[9]Di Bella C M, Rebella C M, Paruelo J M. Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina [J]. International Journal of Remote Sensing, 2000, 21(4): 791-797.

[10]Wang K, Liang S. An improved method for estimating global evapotranspiration based on satellite determination of surface net Radiation, vegetation index, temperature, and soil moisture[J]. Journal of Hydrometeorology, 2008, 9(4): 712-727.

[11]Yunjun Y, Qiming Q, Abduwasit G, et al. Simple method to determine the Priestley-Taylor parameter for evapotranspiration estimation using Albedo-VI triangular space from MODIS data [J]. Journal of Applied Remote Sensing, 2011, 1(5): 503-505.

[12]Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193(1 032): 120-145.

[13]Penman H L. The Physical Basis of Irrigation Control [R]. Report of the 13th International Horticultural Congress, 1953, 2: 913-915.

[14]Monteith J L. Evaporation and environment [J]. Symposia of the Society for Experimental Biology, 1965, 19: 205-234.

[15]Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements[M]. FAO Irrigation and Drainage, 1998: 56.

[16]Xin Xiaozhou. Estimating Evapotranspiration Using Quantitative Parameters Derived from Remote Sensing[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2003.[辛晓洲. 用定量遥感方法计算地表蒸散[D]. 北京:中国科学院遥感应用研究所, 2003.]

[17]Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data [J]. Remote Sensing of Environment, 2007, 106(3): 285-304.

[18]Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data [J]. Remote Sensing of Environment, 2007, 111(4): 519-536.

[19]Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm [J]. Remote Sensing of Environment, 2011, 115(8): 1 781-1 800.

[20]Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data [J]. Remote Sensing of Environment, 2010, 114(7): 1 416-1 431.

[21]Zhang K, Kimball J S, Nemani R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006 [J]. Water Resources Research, 2010, 46(9): W9522, doi: 10.1029/2009WR008800.

[22]Priestley C, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Monthly Weather Review, 1972, 100(2): 81-92.

[23]Davies J A, Allen C D. Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario [J]. Journal of Applied Meteorology, 1973, 12: 649-657.

[24]Hicks B B, Hess G D. On the bowen ratio and surface temperature at Sea [J]. Journal of Physical Oceanography, 1977, 7(1): 141-145.

[25]Mukammal E I, Neumann H H. Application of the Priestley-Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimeter and Class A pan [J]. Boundary-Layer Meteorology, 1977, 12(2): 243-256.

[26]Barton I J. A parameterization of the evaporation from nonsaturated surfaces [J]. Journal of Applied Meteorology, 1979, 18: 43-47.

[27]Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations [J]. Geophysical Research Letters, 1999, 26(17): 2 773-2 776.

[28]Jiang L, Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensing data [J]. Water Resources Research, 2001, 37(2): 329-340.

[29]Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites [J]. Remote Sensing of Environment, 2008, 112(3): 901-919.

[30]Fisher J B, Whittaker R J, Malhi Y. ET come home: Potential evapotranspiration in geographical ecology [J]. Global Ecology and Biogeography, 2011, 20(1): 1-18.

[31]Thornthwaite C W. An approach toward a rational classification of climate [J]. Geographical Review, 1948, 38(1): 55-94.

[32]Bouchet R J. Evapotranspiration réelle et potentielle, signification climatique [J]. IAHS Publication, 1963, 62: 134-142.

[33]Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration [J]. Water Resource Research, 1979, 15(2): 443-450.

[34]Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology [J]. Journal of Hydrology, 1983, 66(1/4): 1-76.

[35]Granger R J. A complementary relationship approach for evaporation from nonsaturated surfaces [J]. Journal of Hydrology, 1989, 111(1/4): 31-38.

[36]Liu Shaomin, Sun Rui, Sun Zhongping, et al. Comparison of different complementary relationship models for regional evapotranspiration estimation [J]. Acta Geographica Sinica, 2004, 59(3): 331-340. [刘绍民, 孙睿, 孙中平, 等. 基于互补相关原理的区域蒸散量估算模型比较[J]. 地理学报, 2004, 59(3): 331-340.]

[37]Venturini V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model [J]. Remote Sensing of Environment, 2008, 112(1): 132-141.

[38]Liu S, Bai J, Jia Z, et al. Estimation of evapotranspiration in the Mu Us Sandland of China [J]. Hydrology and Earth System Sciences, 2010, 14(3): 573-584.

[39]Xu Xingkui, Sui Hongzhi, Tian Guoliang. Application and research of complementary relationship theory in remote sensing [J]. Journal of Remote Sensing, 1999,(2): 54-59.[徐兴奎, 隋洪智, 田国良. 互补相关理论在卫星遥感领域的应用研究[J]. 遥感学报,1999,(2): 54-59.]

[40]Jackson R D, Idso S B, Reginato R J, et al. Canopy temperature as a crop water stress indicator [J]. Water Resource Research, 1981, 17(4): 1 133-1 138.

[41]Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index [J]. Remote Sensing of Environment, 1994, 49(3): 246-263.

[42]Kalma J D, Mcvicar T R, Mccabe M F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data [J]. Surveys in Geophysics, 2008, 29(4): 421-469.

[43]Kustas W P. Estimates of evapotranspiration with a one-and two-layer model of heat transfer over partial canopy cover [J]. Journal of Applied Meteorology, 1990, 29: 704-715.

[44]Chehbouni A, Lo Seen D, Njoku E G, et al. Estimation of sensible heat flux over sparsely vegetated surfaces [J]. Journal of Hydrology, 1997, 188: 855-868.

[45]Chehbouni A, Nouvellon Y, Lhomme J P, et al. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature [J]. Agricultural and Forest Meteorology, 2001, 108(1): 55-65.

[46]Kustas W P, Choudhury B J, Moran M S, et al. Determination of sensible heat flux over sparse canopy using thermal infrared data [J]. Agricultural and Forest Meteorology, 1989, 44(3/4): 197-216.

[47]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas [J]. Journal of Applied Meteorology, 1994, 33(9): 1 110-1 117.

[48]Bastiaanssen W G M, Pelgrum H, Wang J, et al. A remote sensing surface energy balance algorithm for land (SEBAL): Part 2. Validation [J]. Journal of Hydrology, 1998, 212/213: 213-229.

[49]Bastiaanssen W, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL): Part 1. Formulation [J]. Journal of Hydrology, 1998, 212: 198-212.

[50]Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model [J]. Journal of Irrigation and Drainage Engineering, 2007, 133: 380.

[51]Su Z. The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes [J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99.

[52]Liu S, Hu G, Lu L, et al. Estimation of regional evapotranspiration by TM/ETM+ data over heterogeneous surfaces [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(10): 1 169.

[53]Shuttleworth W J, Wallace J S. Evaporation from sparse crops—An energy combination theory [J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.

[54]Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature [J]. Agricultural and Forest Meteorology, 1995, 77(3/4): 263-293.

[55]Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing [J]. Remote Sensing of Environment, 1997, 60(2): 195-216.

[56]Blyth E M, Harding R J. Application of aggregation models to surface heat flux from the Sahelian tiger bush [J]. Agricultural and Forest Meteorology, 1995, 72(3/4): 213-235.

[57]Kustas W P, Zhan X, Schmugge T J. Combining optical and microwave remote sensing for mapping energy fluxes in a semiarid watershed [J]. Remote Sensing of Environment, 1998, 64(2): 116-131.

[58]Zhang Renhua, Sun Xiaomin, Wang Weimin, et al. An operational physical basis of two-layer model of quantitative remote sensing of surface fluxes in regional-scale [J]. Science in China (Series D), 2004, 34(Ⅱ): 200-216. [张仁华, 孙晓敏, 王伟民, 等. 一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J]. 中国科学: D 辑, 2004, 34(Ⅱ): 200-216.]

[59]Zhang R, Tian J, Su H, et al. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval [J]. Sensors, 2008, 8(10): 6 165-6 187.

[60]Carlson T N, Buffum M J. On estimating total daily evapotranspiration from remote surface temperature measurements [J]. Remote Sensing of Environment, 1989, 29(2): 197-207.

[61]Tian Miao, Wang Pengxin, Sun Wei. A review of retrieving of land surface parameters using the land surface temperature-vegetation index feature space [J]. Advances in Earth Science, 2010, 25(7): 698-705.[田苗, 王鹏新, 孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7) : 698-705.]

[62]Venturini V, Bisht G, Islam S, et al. Comparison of evaporative fractions estimated from AVHRR and MODIS sensors over South Florida [J]. Remote Sensing of Environment, 2004, 93(1/2): 77-86.

[63]Batra N, Islam S, Venturini V, et al. Estimation and comparison of evapotranspiration from MODIS and AVHRR sensors for clear sky days over the Southern Great Plains[J]. Remote Sensing of Environment, 2006, 103(1):1-15.

[64]Gomez M, Olioso A, Sobrino J A, et al. Retrieval of evapotranspiration over the alpilles/ReSeDA experimental site using airborne POLDER sensor and a thermal camera [J]. Remote Sensing of Environment, 2005, 96: 399-408.

[65]Sobrino J A, Gómez M, Jiménez-Muoz J C, et al. Application of a simple algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula [J]. Remote Sensing of Environment, 2007, 110(2): 139-148.

[66]Jiang L, Islam S. An intercomparison of regional latent heat flux estimation using remote sensing data [J]. International Journal of Remote Sensing, 2003, 24(11): 2 221-2 236.

[67]Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley-Taylor parameter [J]. Remote Sensing of Environment, 2006, 102(3/4): 293-305.

[68]Stisen S, Sandholt I, Nrgaard A, et al. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin [J]. Remote Sensing of Environment, 2008, 112(3): 1 242-1 255.

[69]Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation [J]. Journal of Geophysical Research, 2003, 108(D9): 4270.

[70]Tang R, Li Z L, Tang B. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation [J]. Remote Sensing of Environment, 2010, 114(3): 540-551.

[71]Sun Liang. Drought Monitoring Based on Improved Land Surface Temperature and Vegetation Cover Space[D]. Beijing: Beijing Normal University, 2010.[孙亮. 基于改进的地表温度—植被覆盖特征空间进行干旱监测[D]. 北京:北京师范大学, 2010.]

[72]Sun Liang, Sun Rui, Li Xiaowen, et al. Estimating evapotranspiration using improved fractional vegetation cover and land surface temperature space [J]. Journal of Resources and Ecology, 2011, 2(3): 225-231.

[73]Méndez-Barroso L A, Garatuza-Payán J, Vivoni E R. Quantifying water stress on wheat using remote sensing in the Yaqui Valley, Sonora, Mexico [J]. Agricultural Water Management, 2008, 95(6): 725-736.

[74]Dickinson R E. Modeling evapotranspiration for three-dimensional global climate models[C]∥Hansen J, Takahashi T,eds. Climates Processes and Climate Variability.  Washington DC: American Geophysical Union, 1984:58-72.

[75]Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation [J]. Journal of Climate, 1996, 9(4): 676-705.

[76]Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models [J]. Journal of the Atmosphere Sciences, 1986, 43: 305-331.

[77]Dai Y, Zeng X, Dickinson R E, et al. The common land model [J]. Bulletin of the American Meteorological Society, 2003, 84(8): 1 013-1 024.

[78]Schuurmans J M, Troch P A, Veldhuizen A A, et al. Assimilation of remotely sensed latent heat flux in a distributed hydrological model [J]. Advances in Water Resources, 2003, 26(2): 151-159.

[79]Pipunic R C, Walker J P, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study [J]. Remote Sensing of Environment, 2008, 112(4):1 295-1 305.

[80]Wang Yueshan. Data assimilation: Its origin, meaning and main methods [J]. Marine Forecast, 1999, 16(1): 11-20. [王跃山. 数据同化——它的缘起、含义及主要方法[J]. 海洋预报,1999,16(1): 11-20.]

[81]Li Xin, Toshio Koike, Cheng Guodong. An algorithm for land data assimilation by using simulated annealing method [J]. Advances in Earth Science, 2003, 18(4): 632-636.[李新, 小池俊雄, 程国栋. 一个基于模拟退火法的陆面数据同化算法[J]. 地球科学进展,2003,18(4): 632-636.]

[82]Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on ensemble Kalman filter [J]. Plateau Meteorology, 2006,25(4): 665-671.[黄春林, 李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象, 2006,25(4): 665-671.]

[83]Xu T, Liu S, Liang S, et al. Improving predictions of water and heat fluxes by assimilating MODIS land surface temperature products into the common land model[J]. Journal of Hydrometeorology, 2010, 12(2): 227-244.

[84]Xu T, Liang S, Liu S. Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter [J]. Journal of Geophysical Research, 2011, 116(D9): D9109.

[85]Huang Chunlin, Li Xin. A review of land data assimilation system[J]. Remote Sensing Technology and Application, 2004, 19(5): 424-430.[黄春林,李新. 陆面数据同化系统的研究综述[J]. 遥感技术与应用, 2004, 19(5): 424-430.]

[86]Zhang Xiuying, Jiang Hong, Han Ying. Land surface data assimilation systems and their usage in global change studies [J]. Remote Sensing Information, 2010, (4): 135-143.[张秀英,江洪,韩英. 陆面数据同化系统及其在全球变化研究中的应用[J]. 遥感信息, 2010, (4): 135-143.]

[87]Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms [J]. Advances in Earth Science, 2012, 27(7): 747-757.[马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.]

[88]Wang Jiemin. Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/ TIPEX [J]. Plateau Meteorology, 1999, 18(3): 280-294. [王介民. 陆面过程实验和地气相互作用研究——从HEIFE 到IMGRASS 和GAME-Tibet/TIPEX [J]. 高原气象, 1999, 18(3): 280-294.]

[89]Sun Rui, Liu Changming. A review on research on land surface water and heat fluxes [J]. Chinese Journal of Applied Ecology, 2003, 14 (3): 434-438. [孙睿,刘昌明. 地表水热通量研究进展[J]. 应用生态学报, 2003, 14(3): 434-438.]

[90]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin [J]. Advances in Earth Science, 2012, 27(5): 481-498. [李新,刘绍民,马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]

[91]Allen R G, Tasumi M, Morse A, et al. A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning [J]. Irrigation and Drainage Systems, 2005, 19(3): 251-268.

[92]Hemakumara H M, Chandrapala L, Moene A F. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer [J]. Agricultural Water Management, 2003, 58(2): 109-122.

[93]Jia L, Su Z, van den Hurk B, et al. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(1/3): 75-88.

[94]Kleissl J, Hong S H, Hendrickx J. New mexico scintillometer network in support of remote sensing, and hydrologic and meteorological models [J]. Bulletin of the American Meteorological Society, 2009, 90(2): 207-218.

[95]Jia Zhenzhen, Liu Shaomin, Mao Defa, et al. A study of the validation method of remotely sensed evapotranspiration based on observation data [J]. Advances in Earth Science, 2010, 25(11): 1 248-1 260.[贾贞贞, 刘绍民, 毛德发, 等. 基于地面观测的遥感监测蒸散量验证方法研究[J]. 地球科学进展, 2010, 25(11): 1 248-1 260.]

[96]Jia Zhenzhen, Liu Shaomin, Xu Ziwei, et al. Validation of remotely sensed evapotranspiration over the Hai River Basin, China[J]. Journal of Geophysical Research, 2012, 117, D13113,doi:10.1029/2011jd017037.

[97]Liu S, Sun R, Sun Z, et al. Evaluation of three complementary relationship approaches for evapotranspiration over the Yellow River basin [J]. Hydrological Processes, 2006, 20(11): 2 347-2 361.

[98]Jin Xiaomei, Wan Li, Liang Jiyun. Accuracy verification of evapotranspiration result using hydrological budget method—A case of study of the Zhangye Basin[J]. Geoscience, 2008, 22(2): 299-303.[金晓媚, 万力, 梁继运. 水均衡法验证蒸散量计算的可靠性——以张掖盆地为例[J]. 现代地质, 2008, 22(2): 299-303.]

[99]Vinukollu R K. Quantifying Global Evapotranspiration from Remote Sensing: Estimates, Trends and Uncertainties for Terrestrial Hydrology[D]. Princeton University,2011.

[100]Xin Xiaozhou, Liu Yani, Liu Qinhuo, et al. Spatial-scale error correction methods for regional fluxes retrieval using MODIS data [J]. Journal of Remote Sensing, 2012, 16(2): 207-231.[辛晓洲, 刘雅妮, 柳钦火,等. MODIS数据估算区域蒸散量的空间尺度误差纠正[J]. 遥感学报, 2012, 16(2): 207-231.]

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[6] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[7] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[8] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[9] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[10] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[11] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[12] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[13] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[14] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[15] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
阅读次数
全文


摘要