地球科学进展 ›› 2012, Vol. 27 ›› Issue (4): 466 -476. doi: 10.11867/j.issn.1001-8166.2012.04.0466

研究论文 上一篇    

农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例
张兴波 1,蒋勇军 1,2*,邱述兰 1,曹敏 1,胡毅军 1   
  1. 1.西南大学地理科学学院,三峡库区生态环境教育部重点实验室,重庆北碚400715; 2.西南大学岩溶环境与石漠化治理研究所, 重庆北碚400715
  • 收稿日期:2011-09-05 修回日期:2012-02-18 出版日期:2012-04-10
  • 通讯作者: 蒋勇军(1968-),男,湖南安化人,副教授,主要从事全球变化、环境地质与水文地质方面的研究. E-mail:jiangjyj@swu.edu.cn
  • 基金资助:

    国家自然科学基金项目“西南典型流域岩溶地质作用的碳汇效应研究”(编号:41172331);国土资源部地质调查项目“地质碳汇潜力综合”(编号:1212011087119);国土资源部岩溶动力学重点实验室开放课题“人类活动对岩溶地下水质影响的δ13C-DIC示踪研究”(编号:KDL2011-01)资助.

Agricultural Activities and Carbon Cycling in Karst Areas in Southwest China:Dissolving Carbonate Rocks and CO 2  Sink

Zhang Xingbo 1, Jiang Yongjun 1,2,Qiu Shulan 1, Cao Min 1,Hu Yijun 1   

  1. 1.School of Geographical Sciences,  Southwest University, Key Laboratory of Eco-environments in Three Gorges Resenoir Region, Ministry of Education, Beipei400715, China;
    2. Institute of Karst Environment and Rock Desertification Control, Southwest University, Beipei400715, China
  • Received:2011-09-05 Revised:2012-02-18 Online:2012-04-10 Published:2012-04-10

以受农业活动影响强烈的重庆青木关地下河流域为研究对象,利用CTDP300多参数水质自动记录仪、WGZ-1型光电数字水位计、HOBO小型气象站在线自动监测电导率、水位以及降雨等数据,并获取流域耕地面积数据,于2010年分月采集地下水样,分析常规水化学和地下水溶解无机碳δ13C,初步探讨流域农业活动对岩溶作用过程和碳汇的影响,发现农业活动对岩溶作用过程产生明显的影响,进而影响到岩溶地质碳汇。地下水水化学以及地下水δ13C-DIC值证实了流域地下水DIC是碳酸、硝酸和硫酸共同溶蚀碳酸盐岩的产物;每月碳酸溶蚀碳酸盐岩产生DIC占地下水中总DIC的比例在55.53%~81.25%之间,雨季(62.98%)普遍低于旱季(74.86%);碳酸溶蚀碳酸盐岩产生的DIC的量为14.67×106 mol/a,其中岩溶作用产生的净CO2汇量为7.335×106 mol/a,而硝酸和硫酸溶蚀碳酸盐岩产生的DIC总量为7.48×106 mol/a,约占地下水中总DIC的33.8%,单位面积耕地上硝酸和硫酸溶蚀碳酸盐岩产生DIC的强度为1.89×106 mol/(km2·a)。人类活动引入的硝酸和硫酸参与碳酸盐岩的溶解并改变了区域碳循环。

HOBO automatic weather station,WGZ-1  photoelectric digital water table gauge and CTDP300 on-line water quality analyzer were set up to monitor rainfall, hydrochemistry and water stage at an agriculture dominated karst catchment, which  is Qingmuguan underground river systemin Chongqing China. The groundwater were sampled and analyzed monthly for hydrochemistry, Dissolved Inorganic Carbon(DIC) concentration and stable carbon isotopes (δ13C-DIC) in 2010. Hydrochemistry and stable carbon isotopes can verify that sulphuric acid and nitric acid take part in dissolving carbonate rocks, and the concentrations of dissolved inorganic carbon in underground river are due to the weathering of carbonate minerals by carbonic acid, sulphuric acid and nitric acid. The contribution rate that carbonic acid dissolving carbonate rocks making  DIC  largely varies from seasons, showing 62.98% in wet season and 74.86% in dry season,between 55.53% and 81.25%. In Qing Muguan catchment, the flux of DIC due to carbonic acid dissolving carbonate rocks is 14.67×106 mol/a, accumulating carbon sink of 7.335×106 mol/a, the flux of DIC due to carbonate rocks weathering by sulphuric acid and nitric acid is 7.48×106 mol/a, amounting to a third of total DIC of ground water. Sulphuric acid and nitric acid dissolving carbonate rocks contribute to increasing DIC of 1.89×106 mol/a every square kilometers of cultivated land. This result is obviously less than the values calculated by predecessors. This work shows that sulphuric acid and nitric acid derived from human activities involve in dissolving carbonate rocks and changing carbon cycling.

中图分类号: 

[1]Yuan D.The carbon cycle in karst[J].Zeitschrift fur Geomorphologie Neue Folge,1997, 108(Suppl.):91-102.
[2]Liu Zaihua. Two important atmospheric CO2 sinks[J]. China Science Bulletin, 2000, 45(21): 2 348-2 351.[刘再华.大气CO2两个重要的汇[J].科学通报,2001,45(21):2 348-2 351.]
[3]Jiang Z C,Yuan D X. CO2 source-sink in karst processes in karst areas of China[J]. Episodes,1999,22(1): 33-35.
[4]Xu Shengyou,Jiang Zhongcheng. Preliminary estimate the relationship between Karstification and CO2 source & sink[J]. China Science Bulletin, 1997, 42(9):953-956.[徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997, 42(9):953-956.]
[5]Liu Zaihua.Contribution of Carbonate rock weathering to the atmospheric CO2 sink[J]. Carsologica Sinica, 2000,19(4):294-300.[刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶,2000,19(4):294-300.]
[6]Etchanchu D, Probst J L. Evolution of the chemical composition of the Garonne river during the period 1971-1984[J].Hydrological Sciences Journal,1988,33(3):243-256.
[7]Semhi K,Amiotte Suchet P,Clauer N, et al.Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin[J].Applied Geochemistry,2000, 15(6):865-874.
[8]West T Q,McBride A C. The contribution of agriculture lime to carbon dioxide emissions in the Unite States: Dissolution, transport, and net emissions[J]. Agriculture, Ecosystems and Environment, 2005,108(2):145-154.
[9]Oh N H,Raymond P A. The contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin[J].Global Biogeochemical Cycle,2006,20(3):GB3012,doi:10.1029/2005GB002565.
[10]Ray mond P A,Oh N H,Turner R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J].Nature,2008,451(7 177):449-452.
[11]Perrin A S,Probst A,Probst J L.Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J].Geochimica et Cosmochimica Acta,2008,72:3 105-3 123.
[12]Li S L,Liu C Q, Li J,et al.Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints[J].Chemical Geology,2010,77:301-309.
[13]Barnes R T,Raymond P A. The contribution of agriculture and urban activities to inorganic carbon fluxes within temperate watersheds[J]. Chemical Geology, 2009,266(3/4):327-336.
[14]Baker A,Cumberland S,Hudson N.Dissolved and total organic and inorganic carbon in some British rivers[J].Area,2008,40(1):117-127.
[15]Spence J,Telmer K.The role of sulfur in chemical weathering and atmospheric CO2 fluxes:Evidence from major ions, δ13C-DIC, and δ34S-SO4 in rivers of the Canadian Cordillera[J].Geochimica et Cosmochimica Acta,2005,69:5 441-5 485.
[16]Lerman A,Wu L.CO2 and sulfuric acid controls of weathering and river water composition[J].Journal of Geochemical Exploration,2006,88(1/3):427-430.[17]Lerman A,Wu L, Mackerzie F T. CO2 and H2SO4 consumption in weathering and material transport to the ocean,and their role in the global carbon balance[J].Marine Chemistry,2007,106:326-350.
[18]Li S L, Calmels D, Han G, et al.Sulfuric acid as an agent of carbonate weathering constrained by δ13C-DIC:Examples from Southweat China[J].Earth and Planetray Science Letters,2008,270:189-199.
[19]Liu Congqiang, Jiang Yingkui,Tao Faxiang, et al.Chemicalweathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J].Geochimica, 2008,37(4): 404-414.[刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008,37(4): 404-414.]
[20]Liu Zaihua,  Dreybrodt W, Han Jun,et al.Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005,24(1):1-14.[刘再华,Dreybrodt W,韩军,等. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14.]
[21]Liu Zaihua, Chris Groves, Yuan Daoxian,et al. Study on the hydrochemical variations caused by the water-rock-gas interaction—An example from the Guilin Karst experimental site[J]. Hydrogeology & Engineering Geology, 2003,30(4):13-18.[刘再华,Chris Groves,袁道先,等.水—岩—气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J].水文地质工程地质,2003,30(4):13-18.]
[22]Liu Zaihua,Li Qiang,Wang Jinliang, et al. Interpretation of borehole storm-scale and vertical hydrochemical variations at the Guilin Karst experimental site[J].Carsologica Sinica, 2004,23(3): 169-176.[刘再华,李强,汪进良,等.桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J].中国岩溶,2004,23(3): 169-176.]
[23]Liu Zaihua,Li Qiang,Sun Hailong,et al. Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:Soil CO2 and dilution effects [J].Journal  Hydrology,2007,337(1/2):207-223.
[24]Yuan Wenhao,He Qiufang,Yang Pingheng,et al. Hydrochemistry and its influencing factors in typical karst valleys—A case study of Qingmuguan underground water system in Chongqing[J]. Journal of Southwest University (Natural Science Edition), 2009,31(6):160-164.[袁文昊,贺秋芳,杨平恒,等. 典型岩溶槽谷地下河水化学时空变化特征及影响因素初探——以重庆青木关地下河系统为例[J].西南大学学报:自然科学版,2009,31(6):160-164.]
[25]Wang Zhijun,Yang Pingheng,Kuang Yinglun, et al.Temporal and spatial variations of the nitrate-nitrogen sources in an underground river using 15N isotope technique[J]. Environmental Science,2009,30(12):3 548-3 554.[汪智军,杨平恒,旷颖仑,等. 基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学,2009,30(12):3 548-3 554.]
[26]Laure Gandois,Anne-Sophie Perrin,Anne Probst.Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment[J]. Geochimica et Cosmochimica Acta,2011,75(5):1 185-1 198.
[27]Deines P, Langmuir D,Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1 147-1 164.
[28]Clark I, Fritz P. Environmental Isotopes in Hydrogeology[M]. Lewis Press:Boca Raton,1997.
[29]Deines P. Carbon isotope effects in carbonate systems[J]. Geochimica et  Cosmochimica Acta, 2004,68(12): 2 659-2 679.

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[3] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[4] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[5] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[6] 刘景昱,方念乔. 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019, 34(6): 618-628.
[7] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[8] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[9] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[10] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[11] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[12] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[13] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[14] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[15] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
阅读次数
全文


摘要