地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1137 -1150. doi: 10.11867/j.issn.1001-8166.2016.11.1137

上一篇    下一篇

古AO/NAO的研究进展
梁文癸( ), 闻新宇 *( )   
  1. 北京大学物理学院大气与海洋科学系 气候与海—气实验室,北京 100871
  • 收稿日期:2016-08-11 修回日期:2016-10-20 出版日期:2016-11-20
  • 通讯作者: 闻新宇 E-mail:lemonadepku@gmail.com;xwen@pku.edu.cn
  • 基金资助:
    国家自然科学基金项目“近21 000年地球气候演变的模拟研究”(编号:41130105)和“北半球冬季东太平洋波列的机理、变率及其它对区域和全球大气环流和气候变化的影响”(编号:41130962)资助

An Overview of Paleo-AO/NAO Studies

Wengui Liang( ), Xinyu Wen *( )   

  1. Laboratory of Climate, Ocean and Atmosphere Studies, Department of Atmospheric and Oceanic Science, School of Physics, Peking University, Beijing 100871, China
  • Received:2016-08-11 Revised:2016-10-20 Online:2016-11-20 Published:2016-11-20
  • Contact: Xinyu Wen E-mail:lemonadepku@gmail.com;xwen@pku.edu.cn
  • About author:

    First author:Liang Wengui(1991-), male, Maoming City,Guangdong Province, Master student. Research areas include Paleoclimate and AO/NAO.E-mail:lemonadepku@gmail.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Towards the understanding of the transient climate evolution of the last 21 000 years”(No.41130105) and “Northeast Pacific wintertime wave train’s variability, dynamics, and its regional and global impacts on atmospheric circulation and climate changes”(No.41130962)

20世纪90年代中后期北大西洋涛动(NAO)年代际变率的发现与北极涛动(AO)概念的提出,引发了持续至今的古AO/NAO研究热潮。从观测和模拟两方面对多时间尺度的古AO/NAO研究进展做了系统的回顾与总结,包括近千年AO/NAO序列的重建,全新世AO/NAO变化趋势的争议,末次冰盛期AO/NAO振幅的减弱,末次间冰期AO/NAO的异常偏正,以及AO/NAO的气候平均态与振幅2个关键概念的区分。其中对不同时段AO/NAO的变化机理做了简要概括与讨论。在此基础上,建议在今后的古AO/NAO研究中,除了寻找时间更长、与AO/NAO显著相关的代用资料外,还要着力加强气候模拟方面的工作,特别是长时间瞬变模拟及对关键外强迫因子开展敏感性试验。只有将观测与数值模拟相结合,才可进一步增进对AO/NAO与气候背景间动力机制的理解。在过去20年间,气候学界对AO/NAO的广泛研究,对于理解全球变暖背景下AO/NAO的变化过程、并提高其可预报性都具有重要意义。

The discovery of decadal variability of North Atlantic Oscillation (NAO) and the introduction of Arctic oscillation (AO) concept have initiated a series of paleo-AO/NAO related studies since the mid-to-late 1990s. The progress and new findings of paleo-AO/NAO works after that time were comprehensively reviewed. The new results from the observations and modelings at four key timescales were summarized in detail: ①the reconstructions of the AO/NAO annual index over the past millennium; ②the debate on AO/NAO’s trend since early Holocene; ③the weakening of AO/NAO’s amplitude during the Last Glacial Maximum; and ④the anomalous positive phase of AO/NAO during the Last Interglacial. In addition, the possible mechanism for different timescales of AO/NAO is also summarized. Furthermore, the distinction between AO/NAO’ was mean state and amplitude, which were not explicitly separated in previous studies, were comprehensively discussed. Considering the current uncertainties related to paleo-AO/NAO studies, we encourage the community to search for more proxies having longer-than-10,000-year length with annual resolution around AO/NAO highly correlated regions. Another, we encourage long-term transient modeling on AO/NAO can be performed in order to improve our understanding of the dynamics and interaction between AO/NAO’s high-frequency variability and the climatological background, so as to further improve AO/NAO’s predictability on global warming context.

中图分类号: 

图1 AO指数及AO/NAO对北半球冬季气候的影响
(a)1950—2016年标准化的冬季 (DJF) AO指数;不同相位AO/NAO对亚欧大陆冬季气候的影响(根据参考文献[7~11]的结论和资料 1,2 (1. https:∥nsidc.org/sites/nsidc.org/files/images∥AO-schematic-wallace-1500px.jpg;2. http:∥www.the-m-factory.com/portfolio/maps/trad_maps_07.html)的示意图修改而来):AO正,对应强极涡,极地冷空气不易南侵,北欧与东亚气候偏暖湿(b);AO负,对应弱极涡,极地冷空气容易南下,北欧和东亚气候相对干冷(c)
Fig.1 AO index and influence of AO/NAO on winter climate over the Northern Hemisphere
(a) Standardized winter (DJF) AO index for 1950-2016. Effects of different phases of AO/NAO on the Eurasia: Positive phase (b) and negative phase (c)
表1 近千年AO/NAO指数的重建
Table 1 Reconstructions of the AO/NAO Index over the last millennium
表2 末次间冰期以来AO/NAO的观测工作
Table 2 The Observations of AO/NAO since Last Interglacial
作者 时段 代用资料 主要结论
全新世以来 1.Noren等[ 47 ] 13 ka至今 美国新英格兰地区的湖泊沉积物 AO有3 000年的周期,全新世AO呈递减趋势
2.Rimbu等[ 48 ] 10 ka至今 北大西洋、地中海与红海的海底沉积物 全新世AO持续减弱
3.Arz等[ 49 ] 10 ka至今 红海北部的沉积物 早中全新世AO较比现代偏正
4.Andersen等[ 50 ] 10 ka至今 挪威、冰岛北部和格陵兰岛东部的沉积物 早全新世NAO偏正,随后递减至中全新世
5.Vernal等[ 16 ] 12 ka至今 北冰洋楚科奇海的沉积物 早全新世AO偏正
6.Bendle等[ 51 ] 10.2 ka至今 冰岛北部的海床沉积物 全新世早期NAO可能偏正
7.Nesje等[ 52 ] 11 ka 至今 挪威西部的冰湖沉积物 早全新世NAO偏负,中全新世偏正
8.Davis等[ 53 ] 12 ka 至今 欧洲地区的花粉资料 AO从早全新世递增至中全新世,然后递减至今
9.Muschitiello等[ 54 ] 5.5~5.0 ka 北极地区大量代用资料的集合 非洲湿润期的结束伴随着AO相位由正到负的变化
10.Lamy等[ 55 ] 8 ka 至今 黑海西南部与红海北部的海底沉积物 AO有500年与800年的周期,全新世AO没有明显趋势
11.Darby等[ 56 ] 9 ka 至今 远离阿拉斯加海岸的海底沉积物 AO有1 500年的周期,全新世AO没有明显趋势
12.Olsen等[ 33 ] 5.2 ka 至今 格陵兰岛西南部的湖底沉积物 5 000~4 000 a BP和2 000~550 a BP NAO偏正, 4 500~2 000 a BP偏负
13.Wassenburg等[ 57 ] 12 ka 至今 摩洛哥西北部与德国西部的洞穴沉积物 从早全新世到中全新世,NAO的气候平均态发生了变化
末次冰期 14.Goñi等[ 58 ] 47~27 ka 地中海西部的海底沉积物 D/O循环伴随着NAO相位的变化,H事件NAO偏正
15.Naughton等[ 59 ] 40~16 ka 伊比利亚半岛西北部海底沉积物 H4,H2和H1中伊比亚半岛气候从湿到干代表着NAO相位从负到正的转变
末次间
冰期
16. Felis等[ 60 ] 122 ka 红海最北部的珊瑚 末次间冰期中东地区地表温度季节性增强,NAO偏正
表3 古AO/NAO的模式模拟
Table 3 Paleo-AO/NAO Modelings
作者 模式 指数定义 6 ka模拟结果 21 ka模拟结果
1.Peltier等[ 63 ] CCSM (35°~45°N,30°~15°W) 与(50°~60°N,25°~10°W)之间的气压差 NAO振幅变强,低压中心南移
2.Rind[ 64 ] GISS 中纬度(30°~50°N)与高纬度(60°~80°N)不同高度的海平面气压或位势高度差值 冷的气候导致极区暖的平流层,导致负AO
3.Gladstone[ 61 ] HadCM3 CCSM FOAM etc. 冰岛—亚速尔气压差以及冬季海平面气压的第一主成分 6 ka有疑似NAO正的气候漂移
4.Justino等[ 65 ] CSM1.4 北大西洋地区(20°~70°N,90°W~40°E)海平面气压的第一主成分 NAO出现了4个正负异常中心
5.Lorenz等[ 66 ] ECHO-G 冬季海平面气压之差:北大西洋(50°W~10°E,45°~65°N)减去 (70°~10°W, 20°~40°N) 早全新世到晚全新世NAO持续变弱
6.Otto-Bliesner
[ 67 ]
CCSM3 冬季(DJFM) 20°N以北海平面气压的EOF第一模态 AO年际涛动振幅与工业化前相似 正负中心南移,振幅变弱,AO与温度降雨之间的联系变弱
7.Justino等[ 68 ] CSM1.4 20°~88°N的Z500月距平的第一主成分 正AO相对应的海平面气压响应值最大值可达12 hPa,而现代气候里这种响应只有4 hPa左右
8.Rivière等[ 69 ] IPSL CNRM
MIROC HadCM3
850 hPa的日异常投影到月的EOF第一模态上 AO的异常中心南移,环状对称结构减弱,整体呈负相位
9.Lü等[ 70 ] CCSM HadCM3
IPSL MIROC
20°~90°N的海平面气压的EOF第一模态 北半球冬季SAT低;AO的振幅比工业化前弱 中纬度正中心南移,正负中心振幅都变弱
图2 全新世早期以来AO/NAO序列的重建(a)和相应的小波分析(b) [ 56 ]
Fig.2 The reconstruction of AO/NAO’s trend since Early Holocene (a) and its wavelet analysis (b) [ 56 ]
图3 AO/NAO气候平均态与振幅(年际变率)的区分示意图
(a) 22 ka以来AO/NAO的气候平均态(蓝线)及叠加在其上的振幅(红线)的演变;(b) 冰消期AO/NAO模态;(c) 全新世AO/NAO模态
Fig.3 Schematic diagram for the distinction of the mean state and amplitude of AO/NAO
(a) AO/NAO index since LGM, mean state is shown as blue curve and amplitude is shown as red curve; (b) Mean state and amplitude of AO/NAO during deglaciation; (c) Mean state and amplitude of AO/NAO during Holocene
[1] Walker G.Correlation in seasonal variation of climate[J]. Monthly Weather Review, 1923, 24: 75-131.
[2] Walker G.Correlation in seasonal variation of weather, IX[J]. Monthly Weather Review, 1924, 25: 275-332.
[3] Walker G T.World weather V[J]. Memoirs of the Royal Meteorological Society, 1932, 4(36): 53-84.
[4] Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1 297-1 300.
[5] Thompson D W J, Wallace J M. Annular modes in the extratropical circulation. Part I: Month-to-month variability[J]. Journal of Climate, 2000, 13(5): 1 000-1 016.
[6] Thompson D W J, Wallace J M, Hegerl G C. Annular modes in the extratropical circulation. Part II: Trends[J]. Journal of Climate, 2000, 13(5): 1 018-1 036.
[7] Thompson D W J, Wallace J M. Regional climate impacts of the Northern Hemisphere annular mode[J]. Science, 2001, 293(5 527): 85-89.
[8] Hurrell J W.Decadal trends in the North Atlantic Oscillation[J]. Science, 1995, 269(5 224): 676-679.
[9] Gong D Y, Wang S W, Zhu J H.East Asian Winter Monsoon and Arctic Oscillation[J]. Geophysical Research Letters, 2001, 28(10): 2 073-2 076.
[10] Gong D Y, Ho C H.Arctic oscillation signals in the East Asian summer monsoon[J]. Journal of Geophysical Research, 2003, 108(D2): 4 066.
[11] Gong Daoyi, Wang Shaowu.Influence of Arctic Oscillation on winter climate over China[J]. Acta Geographica Sinica,2003, 58(4): 559-568.
[龚道溢, 王绍武. 近百年北极涛动对中国冬季气候的影响[J]. 地理学报, 2003, 58(4): 559-568.]
[12] Dickson R R, Osborn T J, Hurrell J W, et al.The Arctic Ocean response to the North Atlantic Oscillation[J]. Journal of Climate, 2010, 13(15): 2 671-2 696.
[13] Mysak L A.Patterns of Arctic circulation[J]. Science, 2001, 293(5 533): 1 269-1 270.
[14] Peterson B J, Holmes R M, Mcclelland J W, et al.Increasing river discharge to the Arctic Ocean[J]. Science, 2002, 298(5 601): 2 171-2 173.
[15] Rigor I G, Wallace J M, Colony R L.Response of sea ice to the Arctic Oscillation[J]. Journal of Climate, 2002, 15(18): 2 648-2 663.
[16] Vernal A D, Hillaire-Marcel C, Darby D A.Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene[J]. Paleoceanography, 2005, 20(4): 347-356.
[17] Hurrell J W, Loon H V.Decadal variations in climate associated with the North Atlantic Oscillation[J]. Climatic Change, 1997, 36(3/4): 301-326.
[18] Cutlip K.Northern influence[J]. Weatherwise, 2000, 53(2): 10-11.
[19] Casado M, Ortega P, Masson-Delmotte V, et al.Impact of precipitation intermittency on NAO-temperature signals in proxy records[J]. Climate of the Past, 2013, 9(2): 871-886.
[20] Yao Yao, Luo Dehai.The North Atlantic Oscillation (NAO) and europe blocking and their impacts on extreme snowstorms: A review[J]. Advances in Earth Science, 2016, 31(6): 581-594.
[姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.]
[21] Moritz R E, Bitz C M, Steig E J.Dynamics of recent climate change in the Arctic[J]. Science, 2002, 297(5 586): 1 497-1 502.
[22] Shindell D T, Miller R L, Schmidt G A, et al.Simulation of recent northern winter climate trends by greenhouse-gas forcing[J]. Nature, 1999, 399(6 735): 452-455.
[23] Cohen J, Barlow M.The NAO, the AO, and global warming: How closely related?[J]. Journal of Climate,2005, 18(21): 4 498-4 513.
[24] Kerr R A.Climate change: What happened to global warming? Scientists say just wait a bit[J]. Science,2009, 326(5 949): 28-29.
[25] Tanaka H L, Tamura M.Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale[J]. Polar Science, 2016, 10(3): 199-209.
[26] Paeth H, Hense A, Glowienkahense R, et al.The North Atlantic Oscillation as an indicator for greenhouse-gas induced regional climate change[J]. Climate Dynamics,1999, 15(12): 953-960.
[27] Müller W A, Roeckner E.ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM[J]. Climate Dynamics,2008, 31(5): 533-549.
[28] Stocker T F, Qin D, Plattner G-K, et al.Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 2013.
[29] Fyfe J C, Boer G J, Flato G M.Arctic and Antarctic oscillations and their projected changes under global warming[J]. Geophysical Research Letters, 1999, 26(1): 1 601-1 604.
[30] Fischer-Bruns I, Banse D F, Feichter J.Future impact of anthropogenic sulfate aerosol on North Atlantic climate[J]. Climate Dynamics, 2008, 32(4): 511-524.
[31] Ortega P, Lehner F, Swingedouw D, et al.A model-tested North Atlantic Oscillation reconstruction for the past millennium[J]. Nature, 2015, 523(7 558): 71-74.
[32] Trouet V, Esper J, Graham N E, et al.Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly[J]. Science, 2009, 324(5 923): 78-80.
[33] Olsen J, Anderson N J, Knudsen M F.Variability of the North Atlantic Oscillation over the past 5,200 years[J]. Nature Geoscience, 2012, 5(11): 808-812.
[34] Feldstein S B, Franzke C.Are the North Atlantic Oscillation and the Northern Annular Mode distinguishable?[J]. Journal of the Atmospheric Sciences, 2006, 63(63): 2 915-2 930.
[35] Ambaum M H, Hoskins B J, Stephenson D B.Arctic oscillation or North Atlantic Oscillation?[J]. Journal of Climate, 2001, 14(16): 3 495-3 507.
[36] Kerr R A.A new force in high-latitude climate[J]. Science, 1999, 284(5 412): 241-242.
[37] Wallace J M.North Atlantic Oscillation/annular mode: Two paradigms-one phenomenon[J]. Quarterly Journal of the Royal Meteorological Society, 2000, 126(564): 791-805.
[38] Hurrell J W.Influence of variations in extratropical wintertime teleconnections on northern hemisphere temperature[J]. Geophysical Research Letters, 1996, 23(6): 665-668.
[39] Cook E R, Darrigo R D, Briffa K R.A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe[J]. Holocene, 1998, 8(1): 9-17.
[40] Appenzeller C, Stocker T F, Anklin M.North Atlantic oscillation dynamics recorded in Greenland Ice Cores[J]. Science, 1998, 282(5 388): 446-449.
[41] Proctor C J, Baker A, Barnes W L, et al.A thousand year speleothem proxy record of North Atlantic climate from Scotland[J]. Climate Dynamics, 2000, 16(10): 815-820.
[42] Cullen H M, D'Arrigo R D, Cook E R, et al. Multiproxy reconstructions of the North Atlantic Oscillation[J]. Paleoceanography, 2001, 16(1): 27-39.
[43] Rodrigo F S, Pozo-Vázquez D, Esteban-Parra M J, et al. A reconstruction of the winter North Atlantic Oscillation index back to A.D. 1501 using documentary data in southern Spain[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D14): 14 805-14 818.
[44] Glueck M F, Stockton C W.Reconstruction of the North Atlantic Oscillation, 1429-1983[J]. International Journal of Climatology, 2001, 21(12): 1 453-1 465.
[45] Mann M E.Large-scale climate variability and connections with the middle east in past centuries[J]. Climatic Change, 2002, 55(3): 287-314.
[46] Cook E R, Darrigo R, Mann M E. A well-verified,multiproxy reconstruction of the winter North Atlantic Oscillation Index since A.D.1400*[J]. Journal of Climate,2002,15(13):1 754-1764
[47] Noren A J, Bierman P R, Steig E J, et al.Millennial-scale storminess variability in the northeastern United States during the Holocene epoch[J]. Nature, 2002, 419(6 909): 821-824.
[48] Rimbu N, Lohmann G, Kim J H, et al.Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data[J]. Geophysical Research Letters, 2003, 30(6): 1 280.
[49] Arz H W, Lamy F, Pätzold J, et al.Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea[J]. Science, 2003, 300(5 616): 118-121.
[50] Andersen C, Koç N, Jennings A, et al. Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability[J]. Paleoceanography, 2004, 19(2): PA2003.
[51] Bendle J A P, Rosell-Melé A. High-resolution alkenone sea surface temperature variability on the North Icelandic Shelf: Implications for Nordic Seas palaeoclimatic development during the Holocene[J]. Holocene, 2007, 17(1): 9-24.
[52] Nesje A, Matthews J A, Dahl S O, et al.Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records[J]. Holocene, 2001, 11(11): 267-280.
[53] Davis B A S, Brewer S. Orbital forcing and role of the latitudinal insolation/temperature gradient[J]. Climate Dynamics,2008, 32(2/3): 143-165.
[54] Muschitiello F, Zhang Q, Sundqvist H S, et al.Arctic climate response to the termination of the African Humid Period[J]. Quaternary Science Reviews, 2015, 125: 91-97,doi:10.1016/j.quascirev.2015.08.012.
[55] Lamy F, Arz H W, Bond G C, et al. Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation[J]. Paleoceanography, 2006, 21(1): PA1008.
[56] Darby D A, Ortiz J D, Grosch C E, et al.1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift[J]. Nature Geoscience, 2012, 5(12): 897-900.
[57] Wassenburg J A, Dietrich S, Fietzke J, et al.Reorganization of the North Atlantic Oscillation during early Holocene deglaciation[J]. Nature Geoscience, 2016, doi:10.1038/ngeo2767.
[58] Goñi M S, Cacho I, Turon J, et al.Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region[J]. Climate Dynamics, 2002, 19(1): 95-105.
[59] Naughton F, Sánchez Goñi M F, Kageyama M, et al. Wet to dry climatic trend in north-western Iberia within Heinrich events[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 329-342.
[60] Felis T, Lohmann G, Kuhnert H, et al.Increased seasonality in Middle East temperatures during the last interglacial period[J]. Nature, 2004, 429(6 988): 164.
[61] Gladstone R M.Mid-Holocene NAO: A PMIP2 model intercomparison[J]. Geophysical Research Letters, 2005, 32(16): L16707.
[62] Braconnot P, Otto-Bliesner B, Harrison S, et al.Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 2: Feedbacks with emphasis on the location of the ITCZ and mid-and high latitudes heat budget[J]. Climate of the Past,2007, 3(2): 261-277.
[63] Peltier W R, Solheim L P.Dynamics of the ice-age Earth: Solid mechanics and fluid mechanics[J].Journal de Physique IV,2002, 12(10): 85-104.
[64] Rind D.AO/NAO response to climate change: 2. Relative importance of low-and high-latitude temperature changes[J]. Journal of Geophysical Research,2005, 110(D12),doi:10.1029/2004JD005686.
[65] Justino F, Peltier W R.The glacial North Atlantic Oscillation[J]. Geophysical Research Letters,2005, 32(21): L21803.
[66] Lorenz S J, Kim J-H, Rimbu N, et al. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling[J].Paleoceanography, 2006, 21(1): PA1002.
[67] Otto-Bliesner B, Brady E C, Clauzet G, et al.Last Glacial Maximum and Holocene Climate in CCSM3[J]. Journal of Climate,2006, 19(11): 2 526-2 544.
[68] Justino F, Peltier W R.Climate Anomalies induced by the Arctic and Antarctic Oscillations: Glacial Maximum and present-day perspectives[J]. Journal of Climate, 2008, 21(3): 459-475.
[69] Rivière G, Laîné A, Lapeyre G, et al.Links between Rossby wave breaking and the North Atlantic Oscillation-Arctic Oscillation in present-day and Last Glacial Maximum climate simulations[J]. Journal of Climate,2010, 23(11): 2 987-3 008.
[70] Lü J M, Kim S J, Abe-Ouchi A, et al.Arctic Oscillation during the Mid-Holocene and Last Glacial Maximum from PMIP2 Coupled Model simulations[J]. Journal of Climate, 2010, 23(14): 3 792-3 813.
[71] D’Arrigo R D. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650[J]. Geophysical Research Letters, 2003, 30(11): 1 549.
[72] Vinther B M, Andersen K K, Hansen A W, et al.Improving the Gibraltar/Reykjavik NAO index[J]. Geophysical Research Letters, 2003, 30(23): 2 222.
[73] Cook E R.Multi-proxy reconstructions of the North Atlantic Oscillation (NAO) index: A critical review and a new well-verified winter NAO index reconstruction back to AD 1400[M]∥Hurrell J W, et al, ed. The North Atlantic Oscillation: Climate Significance and Environmental Impact. Washington DC, American Geophysical Union. 2003: 63-79.
[74] Jones P D, Jonsson T, Wheeler D.Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland[J]. International Journal of Climatology,1997, 17(13): 1 433-1 450.
[75] Jones P D, Davies T D, Lister D H, et al.Monthly mean pressure reconstructions for Europe for the 1780-1995 period[J]. International Journal of Climatology,1999, 19(4): 347-364.
[76] Luterbacher J, Xoplaki E, Dietrich D, et al.Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500[J]. Climate Dynamics,2002, 18(7): 545-561.
[77] Rogers J C.The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere[J]. Monthly Weather Review,1984, 112(112): 1 999-2 015.
[78] Schmutz C, Luterbacher J, Gyalistras D, et al.Can we trust proxy-based NAO index reconstructions?[J]. Geophysical Research Letters,2000, 27(8): 1 135-1 138.
[79] Luterbacher J, Schmutz C, Gyalistras D, et al.Reconstruction of monthly NAO and EU indices back to AD 1675[J]. Geophysical Research Letters,1999, 26(17): 2 745-2 748.
[80] Esper J, Cook E R, Schweingruber F H.Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability[J]. Science,2002, 295(5 563): 2 250-2 253.
[81] Miller G H, Geirsdóttir Á, Zhong Y, et al.Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters,2012, 39(2),doi:10.1029/2011GL050168.
[82] Jones P D, Osborn T J, Briffa K R.Pressure-Based measures of the North Atlantic Oscillation (NAO): A comparison and an assessment of changes in the strength of the NAO and in its influence on surface Climate parameters[M]∥Hurrell J W, Kushnir Y, Visbeck M,eds. The North Atlantic Oscillation: Climate Significance and Environmental Impact. Washington DC, American Geophysical Union. 2003: 51-62.
[83] Bond G, Kromer B, Beer J, et al.Persistent solar influence on North Atlantic climate during the Holocene[J]. Science,2001, 294(5 549): 2 130-2 136.
[84] Kutzbach J E.Monsoon climate of the early Holocene: Climate experiment with the Earth’s orbital parameters for 9000 years ago[J]. Science,1981, 214(4 516): 59-61.
[85] Shindell D T, Schmidt G A, Mann M E, et al.Solar forcing of regional climate change during the Maunder Minimum[J]. Science, 2001, 294(5 549): 2 149-2 152.
[86] Lockwood M, Harrison R G, Woollings T, et al.Are cold winters in Europe associated with low solar activity?[J]. Environmental Research Letters, 2010, 5(2): 024001.
[87] Ineson S, Scaife A A, Knight J R, et al.Solar forcing of winter climate variability in the Northern Hemisphere[J]. Nature Geoscience, 2011, 4(11): 753-757.
[88] Casty C, Raible C C, Stocker T F, et al.A European pattern climatology 1766-2000[J]. Climate Dynamics, 2007, 29(7/8): 791-805.
[89] Andrews D G, Holton J R, Leovy C B.Middle Atmosphere Dynamics[M]. Salt Lake City:Academic Press, 1987.
[90] Hu Y, Kit Tung K.Possible ozone-induced long-term changes in planetary wave activity in late winter[J]. Journal of Climate,2003, 16(18): 3 027-3 038.
[91] Hu Yongyun.On the influence of stratospheric anomalies on tropospheric weather systems[J]. Advances in Earth Science, 2006, 21(7): 713-720.
[胡永云. 关于平流层异常影响对流层天气系统的研究进展[J]. 地球科学进展, 2006, 21(7): 713-720.]
[92] Mangili C, Plessen B, Wolff C, et al.Climatic implications of annual to decadal resolution stable isotope data from calcite varves of the Pinico interglacial lake record, Southern Alps[J]. Global and Planetary Change, 2010, 71(3/4): 168-174.
[93] Sundaram S, Yin Q Z, Berger A, et al.Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago[J]. Climate Dynamics, 2011, 39(5): 1 093-1 105.
[94] Hori M E, Daisuke N, Hiroshi L T.Influence of Arctic Oscillation towards the Northern Hemisphere surface temperature variability under the global warming scenario[J]. Journal of the Meteorological Society of Japan, 2007, 85(6): 847-859.
[95] Branstator G, Selten F.“Modes of variability” and climate change[J]. Journal of Climate, 2009, 22(10): 2 639-2 658.
[96] Barnes E A, Polvani L.Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 Models[J]. Journal of Climate, 2013, 26(18): 7 117-7 135.
[97] Jiang D, Ge Y U, Ping Z, et al.Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Science, 2015, 32(2): 250-275.
[98] Timm O, Timmermann A.Simulation of the last 21 000 years using accelerated transient boundary conditions[J]. Journal of Climate, 2007, 20(17): 4 377-4 401.
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[8] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[9] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[10] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[11] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[12] 姚遥, 罗德海. 北大西洋涛动—欧洲阻塞及其对极端暴雪影响的研究进展[J]. 地球科学进展, 2016, 31(6): 581-594.
[13] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[14] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[15] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
阅读次数
全文


摘要