地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1125 -1136. doi: 10.11867/j.issn.1001-8166.2016.11.1125

上一篇    下一篇

氧化石墨烯对环境污染物的吸附行为及吸附机理
杜佳媛 1( ), 魏永鹏 1, 刘菲菲 2, 代燕辉 1, 赵建 1, 王震宇 1,,A; *( )   
  1. 1.中国海洋大学,近海环境污染控制研究所,海洋环境与生态教育部重点实验室,山东 青岛 266100
    2.山东大学,环境科学与工程学院,山东 济南 250100
  • 收稿日期:2016-06-30 修回日期:2016-10-21 出版日期:2016-11-20
  • 通讯作者: 王震宇 E-mail:dujiayuan@tju.edu.cn;wang0628@ouc.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“典型人工纳米颗粒在不同生态系统中的环境行为及食物链中的关键过程”(编号:41530642)资助

Adsorption Behavior and Mechanism of Environmental Pollutants on Graphene Oxide

Jiayuan Du 1( ), Yongpeng Wei 1, Feifei Liu 2, Yanhui Dai 1, Jian Zhao 1, Zhenyu Wang 1, *( )   

  1. 1.Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
    2.School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
  • Received:2016-06-30 Revised:2016-10-21 Online:2016-11-20 Published:2016-11-20
  • Contact: Zhenyu Wang E-mail:dujiayuan@tju.edu.cn;wang0628@ouc.edu.cn
  • About author:

    First author:Du Jiayuan(1993-), female,Haerbin City, Heilongjiang Province, Master student. Research areas include utilization of water resources and control of water pollution.E-mail:dujiayuan@tju.edu.cn

  • Supported by:
    Project supported by the State Key Program of National Natural Science Foundation of China “Environmental behaviors of typical engineered nanoparticles in different ecosystems and their key processes along food chains”(No.41530642)

氧化石墨烯具有相对较大的表面积,其表面存在的丰富的含氧官能团使其具有良好的亲水性,能稳定地分散在水溶液中,是一种潜在的优质吸附剂。现有研究表明,氧化石墨烯对重金属及阳离子染料废水的处理效果明显优于广泛应用的传统吸附剂,然而由于其自身结构缺陷的原因,其应用还受到很多局限。介绍了氧化石墨烯的制备和结构,并重点针对氧化石墨烯及其复合材料对重金属离子和有机污染物的吸附行为、吸附机理、吸附模型及吸附影响条件等进行了综述,最后对氧化石墨烯及其复合材料在吸附方向的研究和应用前景进行了展望。

Graphene oxide, as an emerging material for contaminants removal,possesses relatively large specific surface area, and it shows good dispersion in water phase due to the hydrophilicessence resulted from abundant oxygen-containing functional groups on the edge, thus leading to a potential excellent adsorbent. Current studies revealthat, because graphene oxide is negatively-charged in a wide range of pHs, the removal efficiency of heavy metals and cationic dyes by graphene oxide is significantly higher than by traditional adsorbents, like activated carbon. However, its applications are still limited due to its structural defects. For example, its π domain is destructed during fabrication process. Therefore, certain structural modifications need to be conducted on the purpose of improving its performance, achieving a better result in water purification. This paper presented the preparation and structure of graphene oxide, and reviewed the adsorption behaviors, adsorption mechanisms, adsorption models and influence factors of heavy metals and organic pollutants on graphene oxide and its composites, respectively. In view of unresolved issues, further research should focus on comprehensive adsorption mechanisms, more facile and effectivemethods for structural modifications and the treatment of graphene oxide after adsorption process.

中图分类号: 

图1 GO的结构示意图(基于Lerf-Klinowski模型)
Fig.1 The structure of Graphene Oxide (based on Lerf-Klinowski model)
图2 GO与金属离子作用机理示意图
Fig.2 Diagrammatic sketch for the mechanism of heavy metals ion adsorption onto GO
表1 GO在水相中常用的吸附等温线模型
Table 1 Isotherm fitting models for GO in the aqueousphase
吸附模型 方程 参数 备注 参考文献
重金属 有机物
Langmuir模型 qe=Q0Ce/(KL+Ce) Q0(mg/kg)为最大吸附量,KL为Langmuir相关系数 假设吸附是单分子层,常用来模拟蛋白质分子、有机污染物及重金属的吸附 [49,53] [54,55]
Freundlich模型 qe=Kf C e 1 / n Kf((mg/kg)/(mg/L)n)为Freundlich相关系数,n为Freundlich指数系数 可应用于表面不均匀的吸附剂,用来拟合GO对于有机物的吸附 [49,53,56] [54,55]
Dubinin-Radushkevich(D-R)模型 lnqe=lnqs-(Kadε2)
ε=RTln(1+1/Ce)
qe(mg/g)为平衡状态下的吸附量,qs(mg/g)为理论等温线饱和量吸附量,Kad(mol2/kJ2)为Dubinin-Radushkevich等温线常数;R,TCe代表气体常数 (8.314 J/mol K)、绝对温度(K) 和吸附平衡浓度(mg/L) D-R方程常被用来区分吸附机制:平均吸附自由能E=2b-0.5是确定吸附机制的重要参数。一般认为物理吸附的E<8 kJ/mol,而化学吸附E值在8~16 kJ/mol [57] [58]
Polanyi理论模型 Polanyi-Manes模型(PMM):logqe= logQ0+a(εsw/Vs)b,Dubinin-Ashtakhov (DA)模型:logqe=logQ0+(εsw/Vs)b εsw=-RTln(Ce/Cs),εsw为有效吸附势(V),Cs为吸附质的溶解度(mg/L);Vs是溶质的摩尔体积;R(8.314×10-3J/(mol·K))为通用气体常数;T(K)是绝对温度;a,b均为PMM模型中的拟合参数 PMM模型及DA模型是基于Polani-Manes理论,是目前最适合用来拟合有机物的吸附模型。但是需知吸附质的溶解度 —— [55]
Temkin模型 qe=RT/b(lnA+lnCe) qe(mg/kg)为平衡吸附溶质的浓度,b(kJ/mol)为和吸附热有关的Temkin常数,A(L/g)为平衡结合常数 考虑到当吸附剂吸附溶质时,若被吸附的溶质间发生相互作用力,则必会对等温吸附行为产生影响。此时适合Temkin模型拟合 [49,56,57] [54]
表2 GO及GO复合物对常见金属的吸附
Table 2 Existing data on adsorption of metal ion by GO and GO composites
图3 GO与有机污染物作用机理示意图
Fig.3 Diagrammatic sketch for the mechanism of organic pollutant adsorption onto GO
[1] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5 696): 666-669.
[2] Novoselov K S, Fal V I, Colombo L, et al.A roadmap for graphene[J]. Nature, 2012, 490(7 419): 192-200.
[3] Wu J, Pisula W, Müllen K.Graphenes as potential material for electronics[J]. Chemical Reviews, 2007, 107(3): 718-747.
[4] Brodie B C. On the atomic weight of graphite[J].Philosophical Transactions of the Royal Society of London, 1859, 149: 249-259.
[5] Staudenmaier L. Verfahrenzurdarstellung der graphitsäure[J]. Berichte der deutschenchemischen Gesellschaft, 1898, 31(2): 1 481-1 487.
[6] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1 339-1 339.
[7] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J].Nature, 2006, 442(7 100): 282-286.
[8] He H, Klinowski J, Forster M, et al.A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1): 53-56.
[9] Dreyer D R, Park S, Bielawski C W, et al.The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
[10] Chowdhury I, Duch M C, Mansukhani N D, et al.Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment[J]. Environmental Science & Technology, 2013, 47(12): 6 288-6 296.
[11] Lerf A, He H, Forster M, et al.Structure of graphite oxide revisited[J].The Journal of Physical Chemistry B, 1998,102(23):4 477-4 482.
[12] Cai W, Piner R D, Stadermann F J, et al.Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J].Science,2008,321(5 897):1 815-1 817.
[13] Zhao G, Ren X, Gao X, et al.Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets[J].Dalton Transactions,2011,40(41):10 945-10 952.
[14] Cote L J, Kim F, Huang J.Langmuir-Blodgett assembly of graphite oxide single layers[J].Journal of the American Chemical Society,2008,131(3):1 043-1 049.
[15] Pham V H, Cuong T V, Hur S H, et al.Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon,2010, 48(7):1 945-1 951.
[16] Huang Jiaxing.New Insight into an old material—Graphene oxide as surfactant sheets[J].Industrial Materials. 2011,(3):123-134 .
[黄嘉兴. 旧材料的新见解——氧化石墨烯之界面活性[J]. 工业材料,2011,(3):123-134.]
[17] Lerf A, Buchsteiner A, Pieper J, et al.Hydration behavior and dynamics of water molecules in graphite oxide[J].Journal of Physics and Chemistry of Solids, 2006, 67(5): 1 106-1 110.
[18] Chen Y, Qi Y, Tai Z, et al.Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites[J]. European Polymer Journal, 2012, 48(6): 1 026-1 033.
[19] Shen J, Hu Y, Shi M, et al.One step synthesis of graphene oxide-magnetic nanoparticle composite[J]. The Journal of Physical Chemistry C, 2010, 114(3): 1 498-1 503.
[20] Xie G, Xi P, Liu H, et al.A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution[J]. Journal of Materials Chemistry, 2012, 22(3): 1 033-1 039.
[21] Quintana M, Spyrou K, Grzelczak M, et al.Functionalization of graphene via 1, 3-dipolar cycloaddition[J]. ACS Nano, 2010, 4(6): 3 527-3 533.
[22] Liu Z, Robinson J T,Sun X, et al.PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33): 10 876-10 877.
[23] Yang Yonggang, Chen Chengmeng, Wen Yuefang, et al.Graphene oxide and its composite with polymers[J].New Carbon Materials,2008,23(3):193-200.
[杨永岗,陈成猛,温月芳,等. 氧化石墨烯及其与聚合物的复合[J].新型炭材料,2008,23(3):193-200.]
[24] Han Z D, Wang J Q.Preparation of graphite oxide and its organic modification[J].Chinese Journal of Inorganic Chemistry, 2003, 19(5): 459-461.
[25] Madadrang C J, Kim H Y, Gao G, et al.Adsorption behavior of EDTA-graphene oxide for Pb (II) removal[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1 186-1 193.
[26] Carpio I E M, Mangadlao J D, Nguyen H N, et al. Graphene oxide functionalized with ethylenediaminetriacetic acid for heavy metal adsorption and anti-microbial applications[J].Carbon, 2014, 77: 289-301,doi:10.1016/j.carbon.2014.05.032.
[27] Herrera-Alonso M, Abdala A A, McAllister M J, et al. Intercalation and stitching of graphite oxide with diaminoalkanes[J].Langmuir, 2007, 23(21): 10 644-10 649.
[28] Stankovich S, Piner R D, Nguyen S B T, et al.Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15): 3 342-3 347.
[29] Shen Y, Chen B.Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in Water[J]. Environmental Science & Technology, 2015, 49(12): 7 364-7 372.
[30] Yang S T, Chang Y, Wang H, et al.Folding/aggregation of grapheneoxide and its application in Cu2+ removal[J]. Journal of Colloid and Interface Science, 2010, 351(1): 122-127.
[31] Luo N, Ni D, Yue H, et al.Surface-engineered graphene navigate divergent biological outcomes toward macrophages[J].ACS Applied Materials & Interfaces, 2015, 7(9): 5 239-5 247.
[32] Huang Z H, Zheng X, Lü W, et al.Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J]. Langmuir, 2011, 27(12): 7 558-7 562.
[33] Yang Yunshang, Zhang Bin, Zhang Yingpeng.Preparation and application research incomposite of graphene oxide[J].Applied Chemical Industry, 2013,42(6):1 138-1 141.
[杨云裳,张彬,张应鹏. 氧化石墨烯的制备及在复合材料中的应用研究进展[J]. 应用化工,2013,42(6):1 138-141.]
[34] Luo J, Jiang S, Zhang H, et al.A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode[J]. Analyticachimicaacta, 2012, 709: 47-53,doi:10.1016/j.aca.2011.10.025.
[35] Xu Z, Gao H, Guoxin H.Solution-based synthesis and characterization of a silver nanoparticle-graphene hybrid film[J]. Carbon,2011,49(14):4 731-4 738.
[36] Vinodgopal K, Neppolian B, Lightcap I V, et al.Sonolytic design of graphene-Au nanocomposites. simultaneous and sequential reduction of graphene oxide and Au (III)[J].The Journal of Physical Chemistry Letters,2010,1(13):1 987-1 993.
[37] Yu S H, Zhao G C.Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin[J].International Journal of Electrochemistry, 2012,doi:10.4061/2012/431253.
[38] Park S, Lee K S, Bozoklu G, et al.Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.
[39] Li B, Liu T, Wang Y, et al.ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalyticperformance[J].Journal of Colloid and Interface Science, 2012, 377(1): 114-121.
[40] Wang Yan.Synthesis of Graphene and Its Application in Polymer Composites[D]. Shanghai: Shanghai Jiao Tong University,2012.
[王彦. 石墨烯的制备及其在聚合物复合材料中的应用[D].上海:上海交通大学,2012.]
[41] Bao C, Guo Y, Song L, et al.In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements[J]. Journal of Materials Chemistry, 2011, 21(35): 13 290-13 298.
[42] Li S, Lu X, Xue Y, et al.Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr (VI) removal in aqueous solution[J].PLoS One, 2012, 7(8): e43328.
[43] Zhang X, Feng Y, Tang S, et al.Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions[J]. Carbon, 2010, 48(1): 211-216.
[44] Zhu J, Li Y, Chen Y, et al.Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting[J]. Carbon, 2011, 49(6): 1 900-1 905.
[45] Wang G, Wang B, Park J, et al.Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermalmethod[J]. Carbon, 2009, 47(1): 68-72.
[46] Zhang Jianmei.Treatment techniques of wastewater with heavy mental[J].Journal of Xi’an United University,2003,(2):55-59.
[张建梅. 重金属废水处理技术研究进展(综述)[J]. 西安联合大学学报,2003,(2):55-59.]
[47] Sitko R, Zawisza B, Malicka E.Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions[J]. TrAC Trends in Analytical Chemistry, 2012, 37: 22-31,doi:10.1016/j.trac.2012.03.016.
[48] Hao L, Song H, Zhang L, et al.SiO2/graphene composite for highly selective adsorption of Pb (II) ion[J]. Journal of Colloid and Interface Science, 2012, 369(1): 381-387.
[49] Deng X, Lü L, Li H, et al.The adsorption properties of Pb (II) and Cd (II) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1): 923-930.
[50] Li Z, Chen F, Yuan L, et al.Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions[J].Chemical Engineering Journal, 2012, 210: 539-546,doi:10.1016/j.cej.2012.09.030.
[51] Mi X, Huang G, Xie W, et al.Preparation of graphene oxide aerogel and its adsorption for Cu 2+ions[J]. Carbon, 2012, 50(13): 4 856-4 864.
[52] Wu Huanling, Wei Sainan, Cui Shuling.Introduction and application of adsorption isotherm[J]. Textile Dyeing and Finishing Journal, 2006,28(10):12-14,27.
[吴焕领,魏赛男,崔淑玲. 吸附等温线的介绍及应用[J]. 染整技术,2006,28(10):12-14,27.]
[53] Wu W, Yang Y, Zhou H, et al.Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide[J]. Water, Air, & Soil Pollution, 2013, 224(1): 1-8.
[54] Gao Y, Li Y, Zhang L, et al.Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2012, 368(1): 540-546.
[55] Wang F, Haftka J J H, Sinnige T L, et al. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles[J]. Environmental Pollution, 2014, 186: 226-233,doi:10.1016/j.envpol.2013.12.010.
[56] Liu L, Li C, Bao C, et al.Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd (II)[J]. Talanta, 2012, 93: 350-357,doi:10.1016/j.talanta.2012.02.051.
[57] Luo S, Xu X, Zhou G, et al.Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb (II) from wastewater[J]. Journal of Hazardous Materials, 2014, 274: 145-155,doi:10.1016/j.jhazmat.2014.03.062.
[58] Du Q, Sun J, Li Y, et al.Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles[J]. Chemical Engineering Journal, 2014, 245: 99-106,doi:10.1016/j.cej.2014.02.006.
[59] Zhao G, Li J, Ren X, et al.Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J].Environmental Science & Technology, 2011, 45(24): 10 454-10 462.
[60] Sitko R, Turek E, Zawisza B, et al.Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Transactions, 2013, 42(16): 5 682-5 689.
[61] Wang H, Yuan X, Wu Y, et al.Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution[J].Applied Surface Science, 2013, 279: 432-440,doi:10.1016/j.apsusc.2013.04.133.
[62] Wu Z, Joo H, Lee K.Kinetics and thermodynamics of the organic dye adsorption on the mesoporous hybrid xerogel[J].Chemical Engineering Journal, 2005, 112(1): 227-236.
[63] Wu Z, Ahn I S, Lin Y, et al.Methyl orange adsorption by microporous and mesoporous TiO2-SiO2 and TiO2-SiO2-Al2O3 composite xerogels[J]. Composite Interfaces, 2004, 11(2): 205-212.
[64] Li L, Fan L, Sun M, et al.Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 76-83,doi:10.1016/j.colsurfb.2013.01.074.
[65] Liu L, Liu S, Zhang Q, et al.Adsorption of Au (III), Pd (II), and Pt (IV) from aqueous solution onto graphene oxide[J].Journal of Chemical & Engineering Data, 2012, 58(2): 209-216.
[66] Cheng H, Zeng K, Yu J.Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite[J].Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(1): 599-603.
[67] Vilar V J P, Botelho C M S, Boaventura R A R. Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste[J]. Process Biochemistry, 2005, 40(10): 3 267-3 275.
[68] Al-Degs Y S, El-Barghouthi M I, El-Sheikh A H, et al.Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon[J]. Dyes and Pigments, 2008, 77(1): 16-23.
[69] Zhao J, Wang Z, White J C, et al.Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation[J].Environmental Science & Technology, 2014, 48(17): 9 995-10 009.
[70] Lützenkirchen J.Ionic strength effects on cation sorption to oxides: Macroscopic observations and their significance in microscopic interpretation[J]. Journal of Colloid and Interface Science, 1997, 195(1): 149-155.
[71] Grover P K, Ryall R L.Critical appraisal of salting-out and its implications for chemical and biological sciences[J]. Chemical Reviews, 2005, 105(1): 1-10.
[72] Crittenden J C, Trussell R R, Hand D W, et al.MWH’s Water Treatment: Principles and Design[M].New York:John Wiley & Sons, 2012.
[73] Wilkinson K J, Balnois E, Leppard G G, et al.Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155(2): 287-310.
[74] Sutton R, Sposito G.Molecularstructure in soil humic substances: The new view[J]. Environmental Science & Technology, 2005, 39(23): 9 009-9 015.
[75] Schulten H R, Schnitzer M.A state of the art structural concept for humicsubstances[J].Naturwissenschaften, 1993, 80(1): 29-30.
[76] Hartono T, Wang S, Ma Q, et al.Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution[J].Journal of Colloid and Interface Science, 2009, 333(1): 114-119.
[77] Chandra V, Park J, Chun Y, et al.Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3 979-3 986.
[78] Tomalia D A, Baker H, Dewald J, et al.A new class of polymers: Starburst-dendritic macromolecules[J].Polymer Journal, 1985, 17(1): 117-132.
[79] Tomalia D A, Baker H, Dewald J, et al.Dendritic macromolecules: Synthesis of starburst dendrimers[J].Macromolecules, 1986, 19(9): 2 466-2 468.
[80] Zhang F, Wang B, He S, et al.Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions[J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1 719-1 726.
[81] Lee Y C, Yang J W.Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(3): 1 178-1 185.
[82] Jiang G, Lin Z, Chen C, et al.TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants[J]. Carbon, 2011, 49(8): 2 693-2 701.
[83] Nguyen-Phan T D, Pham V H, Shin E W, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites[J]. Chemical Engineering Journal, 2011, 170(1): 226-232.
[84] Sun Y, Yang S, Chen Y, et al.Adsorption and desorption of U(VI) on functionalized graphene oxides: A combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7): 4 255-4 262.
[85] Tan P, Sun J, Hu Y, et al.Adsorption of Cu2+, Cd2+and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J]. Journal of Hazardous Materials, 2015, 297: 251-260,doi:10.1016/j.jhazmat.2015.04.068.
[86] Yan H, Wu H, Li K, et al.Influence of the surface structure of graphene oxide on the adsorption of aromatic organic compounds from water[J].ACS Applied Materials & Interfaces, 2015, 7(12): 6 690-6 697.
[87] Wang X, Huang S, Zhu L, et al.Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds[J]. Carbon, 2014, 69: 101-112,doi:10.1016/j.carbon.2013.11.070.
[88] Apul O G, Wang Q, Zhou Y, et al.Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon[J].Water Research, 2013, 47(4): 1 648-1 654.
[89] Wang J, Chen Z, Chen B.Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets[J].Environmental Science & Technology, 2014, 48(9): 4 817-4 825.
[90] Li H, Fu Z, Yang L, et al.Synthesis and adsorption property of hydrophilic-hydrophobic macroporous crosslinked poly (methyl acryloyldiethylenetriamine)/poly (divinylbenzene)(PMADETA/PDVB) interpenetrating polymer networks (IPNs)[J].RSC Advances, 2015, 5(34): 26 616-26 624.
[91] Yang X, Li J, Wen T, et al.Adsorption of naphthalene and its derivatives on magnetic graphene composites and the mechanism investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422: 118-125,doi:10.1016/j.colsurfa.2012.11.063.
[92] Yang Z, Yan H, Yang H, et al.Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water[J]. Water Research, 2013, 47(9): 3 037-3 046.
[93] Liu J.Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications[J].Physical Chemistry Chemical Physics, 2012, 14(30): 10 485-10 496.
[94] Wei H, Yang W, Xi Q, et al.Preparation of Fe3O4 @graphene oxidecore-shell magnetic particles for use in protein adsorption[J]. Materials Letters, 2012, 82: 224-226,doi:10.1016/j.matlet.2012.05.086.
[95] Yan H, Tao X, Yang Z, et al.Effects of the oxidation degree of graphemeoxide on the adsorption of methylene blue[J].Journal of Hazardous Materials, 2014, 268: 191-198,doi:10.1016/j.jhazmat.2014.01.015.
[96] Ramesha G K, Kumara A V, Muralidhara H B, et al.Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J].Journal of Colloid and Interface Science, 2011, 361(1): 270-277.
[97] Yang S T, Chen S, Chang Y, et al.Removal of methylene blue from aqueous solution by graphene oxide[J].Journal of Colloid and Interface Science, 2011, 359(1): 24-29.
[98] Balamurugan K, Subramanian V.Adsorption of chlorobenzene onto (5,5) armchair single-walled carbon nanotube and graphene sheet: Toxicityversus adsorption strength[J].The Journal of Physical Chemistry C, 2013, 117(41): 21 217-21 227.
[99] Pei Z, Li L, Sun L, et al.Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2,4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide[J]. Carbon, 2013, 51: 156-163,doi:10.1016/j.carbon.2012.08.024.
[100] Shen Y, Fang Q, Chen B.Environmental applications of three-dimensional graphene-based macrostructures: Adsorption, transformation, and detection[J]. Environmental Science & Technology, 2014, 49(1): 67-84.
[101] Wang S, Sun H, Ang H M, et al.Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials[J]. Chemical Engineering Journal, 2013, 226: 336-347,doi:10.1016/j.cej.2013.04.070.
[102] Peng Zhan.Studies on the Preparation and Properties of Graphene Oxide Nanocomposites[D].Kaifeng: He’nan University, 2013.
[彭展. 氧化石墨烯纳米复合材料的制备及其性能的研究[D].开封:河南大学,2013.]
[103] Jiang Kun.Preparation and Properties of Graphene Oxide Grafted with Well-defined Polymers[D].Suzhou: Suzhou University, 2013.
[姜坤. 氧化石墨烯—聚合物复合材料的制备及性能研究[D].苏州:苏州大学,2013.]
[104] Yang X, Tu Y, Li L, et al.Well-dispersed chitosan/graphene oxide nanocomposites[J]. ACS Applied Materials & Interfaces, 2010, 2(6): 1 707-1 713.
[105] Wang X, Qin Y, Zhu L, et al.Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: Synergistic effect between adsorption and catalysis[J].Environmental Science & Technology, 2015, 49(11): 6 855-6 864.
[106] Kabiri S, Tran D N H, Altalhi T, et al. Outstanding adsorptionperformance of graphene-carbon nanotube aerogels for continuous oil removal[J]. Carbon, 2014, 80: 523-533,doi:10.1016/j.carbon.2014.08.092.
[107] Liu F, Chung S, Oh G, et al.Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 922-927.
[108] Sui Z Y, Cui Y, Zhu J H, et al.Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents[J].ACS Applied Materials & Interfaces, 2013, 5(18): 9 172-9 179.
[109] Lee J, Chae H R, Won Y J, et al.Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment[J].Journal of Membrane Science, 2013, 448: 223-230,doi:10.1016/j.memsci.2013.08.017.
[110] Nair R R, Wu H A, Jayaram P N, et al.Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J].Science, 2012, 335(6 067): 442-444.
[111] Joshi R K, Carbone P, Wang F C, et al.Precise and ultrafast molecular sieving through graphene oxide membranes[J].Science, 2014, 343(6 172): 752-754.
[112] Mi B.Graphene oxide membranes for ionic and molecular sieving[J].Science, 2014, 343(6 172): 740-742.
[113] Shao L, Cheng X, Wang Z, et al.Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide[J].Journal of Membrane Science, 2014, 452: 82-89,doi:10.1016/j.memsci.2013.10.021.
[114] Li Fang, Meng Die.Graphene oxide:Challenges and opportunities for membrane science[J]. Membrane Science and Technology,2015,36(6):106-112.
[李方,孟蝶. 氧化石墨烯:膜科学的机遇与挑战[J]. 膜科学与技术,2015,36(6):106-112.]
[1] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[2] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[3] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[4] 范婷婷, 王玉军,李成保,周东美. 基于悬液Wien效应研究离子与土壤黏粒之间[J]. 地球科学进展, 2015, 30(12): 1295-.
[5] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[6] 张兆永, 吉力力 , 阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[7] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[8] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[9] 刘志彬,方伟,陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1154-1159.
[10] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[11] 周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125.
[12] 温健婷,张霞,张兵,赵冬. 土壤铅含量高光谱遥感反演中波段选择方法研究[J]. 地球科学进展, 2010, 25(6): 625-629.
[13] 李俊,谢丽,盛杰,栾富波,周琪. Fe(Ⅱ)/铁氧化物表面结合铁系统还原有机污染物的研究进展[J]. 地球科学进展, 2009, 24(1): 25-32.
[14] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[15] 陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322.
阅读次数
全文


摘要