地球科学进展 ›› 2017, Vol. 32 ›› Issue (4): 362 -372. doi: 10.11867/j. issn. 1001-8166.2017.04.0362

上一篇    下一篇

FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化
陈晓龙 1( ), 吴波 1, 周天军 1, 2   
  1. 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-11-09 修回日期:2017-01-02 出版日期:2017-04-20
  • 基金资助:
    公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);中国博士后科学基金项目“温室气体强迫下亚洲夏季风响应的不确定性研究”(编号:2015M581152)资助

Interdecadal Change of Relation between East Asian Summer Monsoon and ENSO in Previous Winter in An Ocean Assimilation System Based on FGOALS-s2

Xiaolong Chen 1( ), Bo Wu 1, Tianjun Zhou 1, 2   

  1. 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2. University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2016-11-09 Revised:2017-01-02 Online:2017-04-20 Published:2017-04-20
  • About author:

    First author:Chen Xiaolong (1988-), male, Pucheng County, Shaanxi Province, Post Doctor. Research areas include monsoon variability and climate change.E-mail:chenxl@lasg.iap.ac.cn

  • Supported by:
    Foundation item:Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CMA and CESM” (No.GYHY201506012);The China Postdoctoral Science Foundation “A study on uncertainties in the response of the Asian monsoon to Green-house gas forcing” (No.2015M581152)

海洋同化系统为年代际预测试验提供初值,其性能可能会影响年代际预测技巧,因此评估其对重要年代际变化现象的模拟能力非常必要。观测发现,东亚夏季风(EASM)和前冬厄尔尼诺—南方涛动(ENSO)的关系在1970s末加强,随后在1990s中期后减弱。基于FGOALS-s2耦合气候模式的海洋同化系统评估了其对这2次年代际变化的模拟能力。结果表明,决定模式能否再现EASM和前冬ENSO关系的年代际变化有2个重要因素:①与前冬ENSO有关的夏季印度洋—太平洋海温型的年代际变化;②模式西北太平洋反气旋对热带海温的响应偏差。模式中西北太平洋反气旋与东北印度洋的暖海温关系稳定,当1970s末前冬ENSO对夏季印度洋海温影响显著增强时,模式能够模拟出北印度洋降水以及赤道东印度洋至海洋大陆上空Kelvin波的增强,从而可再现EASM与前冬ENSO关系的增强;而1990s中期后模式中与前冬ENSO有关的东北印度洋海温异常进一步增强,与观测相反,使得模式未能再现观测中EASM与前冬ENSO关系的减弱。此外,1990s中期后模式对夏季中太平洋冷海温异常的Rossby波响应存在较大偏差,是其未能再现此次年代际变化的另一个原因。研究表明,与ENSO有关的热带印太海温的年代际变化预测水平和模式对海温的响应偏差将在一定程度上制约模式对EASM与ENSO关系的年代际预测能力。

Ocean Assimilation System (OAS) is an important component for decadal prediction experiment, providing initial conditions. Evaluating the atmosphere response in OAS can provide reference for analyzing results from decadal prediction. We analyzed the interdecadal change in relation between the East Asian Summer Monsoon (EASM) and El Niño/Southern Oscillation (ENSO) in the previous winter based on an OAS on the coupled climate model FGOALS-s2. It shows that two factors impact the performance: ① interdecadal change of Ssea Surface Temperature (SST) pattern in the summer Indo-Pacific Basin related with ENSO in previous winter and ② bias in model response of the western North Pacific anticyclone to tropical SST anomalies. The anticyclone shows steady relation with the warm eastern Indian Ocean. When ENSO’s impact on the summer Indian Ocean is strengthened around the end of 1970s, the OAS can reproduce the strengthened EASM-ENSO relation. However, the trend of intensified EASM-ENSO relation in the OAS is still significant after the mid-1990s due to the stronger link between the anticyclone and the northeastern Indian Ocean, differing with the observation which shows a weakened effect of the Indian Ocean on the anticyclone. In addition, the bias in response to the SST anomalies in the central Pacific also partly contributes to the failure in reproducing the weakening EASM-ENSO relation after the mid-1990s. It implies that prediction skill of interdecadal ENSO impact on the tropical Indo-Pacific SST and response bias of model to SST anomalies may to some extent limit the capability to predict the interdecadal change in the EASM-ENSO relation.

中图分类号: 

图1 EASMI与前冬Nino3.4指数关系的年代际变化以及两者在海洋同化系统中的模拟技巧
(a)EASMI与前冬Nino 3.4指数的15年滑动相关系数(红色:同化系统;黑色:观测;绿色:无同化、自由耦合的历史气候模拟);(b)同化系统 中EASMI和Nino 3.4指数的模拟技巧,分别为与观测中EASMI和Nino3.4指数的15年滑动相关系数;粗线代表集合平均,细线代表单个成员;观测的12个成员为4套再分析资料和3套海温资料的组合;同化系统有3个成员,其初值源于对应的3组自由耦合的历史模拟试验;浅黄色阴影区(1979—1993年)为EASMI与前冬Nino3.4指数相关系数以及EASMI模拟技巧较高的时期;2条虚线分别表示10%和5%的显著性水平
Fig.1 Decadal variation of the relation between EASMI and Nino3.4 index in previous DJF and their skills in OAS
(a) 15 year running correlation coefficient between EASMI and Nino3.4 in previous DJF (red: OAS; black: OBS; green: free coupled historical simulation without assimilation); (b) Skill of EASMI and Nino3.4, represented by 15 year running correlation coefficient between OAS and OBS; Bold lines denote ensemble mean, thin lines the individual members; Observational 12 members are the combination of 4 re-analyses and 3 SST datasets; 3 members of OAS are initialized from corresponding free-coupled historical simulation; Light yellow shading covering 1979-1993 highlights the period of high correlation of EASM and Nino3.4 and high skill of EASMI; Two dashed lines are the 10% and 5% significance levels respectively
图2 回归到前冬Nino3.4指数上的夏季SST异常(单位:℃)
左列为观测;右列为同化系统;上、中、下分别为EASMI与前冬Nino3.4指数关系较低(1964—1978年)、较高(1979—1993年)和较低(1994—2008年)的3段时期;阴影区为海温异常通过5%显著性;黑框区为东北印度洋区域(0°~20°N, 75°~110°E)
Fig.2 SST anomalies (units: ℃) in JJA regressed against Nino3.4 in previous DJF
Left column is the observation, right column is the OAS; Top, middle and bottom are three periods that correspond to low (1964-1978), high (1979-1993)and low (1994-2008) correlation between EASMI and Nino3.4 in previous winter, respectively; Dotted shadings exceed the 5% significance level; Black box denotes the northeastern Indian Ocean (0°~20°N, 75°~110°E)
图3 3段时期与前冬ENSO有关的夏季东北印度洋(0°~20°N,75°~110°E;见 图2 黑框区)海温异常(单位:℃)
圆圈代表观测,正方形代表同化系统
Fig.3 Summertime SST anomaly (units: ℃) in the northeastern Indian Ocean (0°~20°N, 75°~110°E;black box in Fig.2 ) associated with Nino3.4 in previous winter during the 3 periods
Circles are observation, squares are the OAS
图4 回归到EASMI上的夏季SST异常(单位:℃)
左列为观测;右列为同化系统。上、中、下分别为EASMI与前冬Nino3.4指数关系较低(1964—1978年)、较高(1979—1993年)和较低(1994—2008年)的3段时期;阴影区为海温异常通过5%显著性;黑框区为东北印度洋区域(0°~20°N, 75°~110°E)
Fig.4 SST anomalies (units: ℃) in JJA regressed against EASMI
Left column is the observation, right column is the OAS; Top, middle and bottom are three periods that correspond to low (1964-1978),high (1979-1993) and low (1994-2008) correlation between EASMI and Nino3.4 in previous winter, respectively; Dotted shadings exceed the 5% significance level; Black box denotes the northeastern Indian Ocean (0°~20°N, 75°~110°E)
图5 回归到EASMI上的夏季降水(填色;单位:mm/d)和850 hPa风场异常(箭头;单位:m/s;小于0.5 m/s的风场未显示)
左列为观测;右列为同化系统。上、中、下分别为EASMI与前冬Nino3.4指数关系较低(1964—1978年)、较高(1979—1993年)、较低(1994—2008年)的3段时期;阴影区为降水异常通过5%显著性;黑框区为北印度洋和南亚季风区(0°~20°N,60°~110°E)
Fig.5 Anomalies of precipitation (shadings; units: mm/d) and 850 hPa wind in JJA regressed against EASMI (arrow; units: m/s; less than 0.5 m/s not drawn)
Left column is the observation, right column is the OAS; top, middle and bottom are three periods that correspond to low (1964-1978), high (1979-1993) and low (1994-2008) correlation between EASMI and Nino3.4 in previous winter, respectively; Dotted shadings denote precipitation anomalies exceeding the 5% significance level; Black box denotes the northern Indian Ocean and South Asian monsoon region (0°~20°N, 60°~110°E)
图6 回归到EASMI上的夏季500~200 hPa厚度异常(填色;单位:m)
左列为观测;右列为同化系统。上、中、下分别为EASMI与前冬Nino3.4指数关系较低(1964—1978年)、较高(1979-1993年)和较低(1994—2008年)的3段时期;阴影区通过5%显著性检验;赤道东印度洋—海洋大陆(5°S~5°N,90°~140°E)上空的厚度异常用来定义这一区域的Kelvin波;西北太平洋(10°~20°N,110°~170°E)和澳大利亚北部(25°~15°S,110°~170°E)上空厚度异常的平均值用来定义这一区域的Rossby波
Fig.6 Anomalies of 500~200 hPa thickness in JJA regressed against EASMI (shading; units: m)
Left column is the observation, right column is the OAS;Top, middle and bottom are three periods that correspond to low (1964-1978), high (1979-1993) and low (1994-2008) correlation between EASMI and Nino3.4 in previous winter, respectively; Dotted shadings exceed the 5% significance level; Thickness anomalies over the equatorial eastern Indian Ocean and maritime continent (5°S~5°N, 90°~140°E) are used to define Kelvin wave; Averaged anomalies over the western North Pacific (10°~20°N, 110°~170°E) and the north of Australia (25°~15°S, 110°~170°E) used to define Rossby wave
图7 3段时期观测(圆圈)和同化系统(正方形)中与东亚夏季风指数有关的关键变量的异常
(a)东北印度洋(0°~20°N,75°~110°E;见 图4 黑框区)海表温度异常;(b)北印度洋(0°~20°N,60°~110°E;见 图5 黑框区)降水异常;(c)赤道东印度洋—海洋大陆(5°S~5°N,90°~140°E;见 图6 黑框区)上空的Kelvin波异常;(d)西北太平洋(10°~20°N,110°~170°E;见 图6 黑框区)和澳大利亚北部(25°~15°S,110°~170°E;见 图6 黑框区)上空Rossby波异常
Fig.7 Anomalies of key variables associated with EASMI in the observation (circles) and OAS (squares) during the 3 periods
(a) SST anomalies in the northeastern Indian Ocean (0°~20°N, 75°~110°E; black box in Fig. 4 ); (b) Precipitation anomalies over the northern Indian Ocean (0°~20°N, 60°~110°E; black box in Fig. 5 ); (c) Kevin wave anomalies over the equatorial eastern Indian Ocean and maritime continent (5°S~5°N, 90°~140°E; black box in Fig. 6 ); (d) Rossby wave anomalies over the western North Pacific (10°~20°N,110°~170°E; black box in Fig. 6 ) and the north of Australia (25°~15°S, 110°~170°E; black box in Fig. 6 )
[1] Nitta T.Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. Journal of the Meteorological Society of Japan, 1987, 65(3): 373-390.
[2] Huang Ronghui, Sun Fengying.Interannual variation of the summer teleconnection pattern over the Northern Hemisphere and its numerical simulation[J].Chinese Journal of Atmospheric Sciences, 1994, 18(4):456-465,doi:10.3878/j.issn.1006-9895.1994.04.10.
[黄荣辉,孙凤英. 热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响[J].大气科学,1994,18(4):456-465,doi:10.3878/j.issn.1006-9895.1994.04.10.]
[3] Lu R, Dong B.Westward extension of North Pacific Subtropical High in summer[J].Journal of the Meteorological Society of Japan, 2001, 79(6):1 229-1 241, doi:10.2151/jmsj.79.1229.
[4] Wu B, Zhou T, Li T.Seasonally evolving dominant interannual variability modes of East Asian climate[J]. Journal of Climate, 2009, 22(11): 2 992-3 005.
[5] Huang R, Wu Y.The influence of ENSO on the summer climate change in China and its mechanism[J].Advances in Atmospheric Sciences, 1989, 6(1): 21-32.
[6] Wang B, Wu R, Fu X.Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?[J]. Journal of Climate, 2000, 13(9): 1 517-1 536.
[7] Wang B,Wu R,Lau K M.Interannual variability of the Asian summer monsoon:Contrasts between the Indian and the western North Pacific-East Asian monsoon[J].Journal of Climate, 2001, 14(20): 4 073-4 090.
[8] Wu B, Li T, Zhou T.Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. Journal of Climate, 2010, 23(11): 2 974-2 986.
[9] Ding H, Greatbatch R J, Park W, et al.The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model[J]. Climate Dynamics, 2014, 42(1): 367-379.
[10] Du Y, Xie S P, Huang G, et al.Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming[J].Journal of Climate, 2009, 22(8): 2 023-2 038.
[11] Xie S P, Hu K, Hafner J, et al.Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño[J].Journal of Climate, 2009, 22(3): 730-747.
[12] Wang B, Yang J, Zhou T, et al.Interdecadal changes in the major modes of Asian-Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s[J].Journal of Climate, 2008, 21(8): 1 771-1 789.
[13] Xie S P, Du Y, Huang G, et al.Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s[J].Journal of Climate, 2010, 23(12): 3 352-3 368.
[14] Chen X, Zhou T.Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability[J].Journal of Geophysical Research: Atmosphere, 2014, 119(23): 13 043-13 066.
[15] Song F, Zhou T.The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon-ENSO relationship during the 20th century[J].Journal of Climate, 2015, 28(18): 7 093-7 107.
[16] Feng J, Wang L, Chen W.How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases?[J]. Journal of Climate, 2014, 27(7): 2 682-2 698.
[17] Yim S Y, Wang B, Kwon M H.Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s[J]. Climate Dynamics, 2013, 42(5): 1 325-1 333.
[18] Wang B, Ding Q, Fu X, et al.Fundamental challenge in simulation and prediction of summer monsoon rainfall[J]. Geophysical Research Letters, 2005, 32(15): L15711.
[19] Wu R, Kirtman B P.Roles of Indian and Pacific ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dynamics, 2005, 25(2): 155-170.
[20] Zhou T, Wu B, Wang B.How well do Atmospheric General Circulation Models capture the leading modes of the interannual variability of the Asian-Australian Monsoon?[J]. Journal of Climate, 2009, 22(5): 1 159-1 173.
[21] Wu B,Chen X,Song F,et al.Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2:Evaluations of strengths and weaknesses[J]. Advances in Meteorology,2015,doi:10.1155/2015/904826.
[22] Bao Q, Lin P, Zhou T, et al.The flexible global Ocean-Atmosphere-Land System model Version: FGOALS-s2[J].Advances in Atmospheric Sciences, 2013, 30(3): 561-576.
[23] Good S A, Martin M J, Rayner N A.EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J].Journal of Geophysical Research: Oceans, 2013, 118(12): 6 704-6 716.
[24] Rayner N A, Parker D E, Horton E B, et al.Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14): 4 407.
[25] Compo G P, Whitaker J S, Sardeshmukh P D,et al.The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1-28.
[26] Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-470.
[27] Poli P, Hersbach H, Dee D P.ERA-20C: An atmospheric reanalysis of the twentieth century[J]. Journal of Climate, 2016, 29(11): 4 083-4 097.
[28] Onogi K, Tsutsui J, Koide H, et al.The JRA-25 reanalysis[J].Journal of the Meteorological Society of Japan, 2007, 85(3): 369-432.
[29] Huang B, Banzon V F, Freeman E, et al.Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons[J]. Journal of Climate, 2015, 28(3): 911-930.
[30] Reynolds R W, Smith T M.Improved global sea surface temperature analysis using optimum interpolation[J]. Journal of Climate, 1994, 7(6): 929-948.
[31] Wang B, Wu R, Lau K M.Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoon[J]. Journal of Climate, 2001,14(20): 4 073-4 090.
[1] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[2] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[3] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[4] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[5] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[6] 李建平, 赵森, 李艳杰, 汪雷, 孙诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[7] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[8] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[9] 王万里, 王颢樾, 谢应齐, 王卫国,王祖武, 王凯,杜良敏,邓南圣,蔡述明,刘耀林. 夏季东亚大槽和副热带高压年代际变化的分析[J]. 地球科学进展, 2012, 27(3): 304-320.
[10] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[11] 张立凤, 吕庆平, 张永垂. 北太平洋涡旋振荡研究进展[J]. 地球科学进展, 2011, 26(11): 1143-1149.
[12] 邹立尧,国世友,牛宁. 三江平原1960—2004年农业气候环境年代际变化[J]. 地球科学进展, 2010, 25(8): 844-850.
[13] 况雪源,刘健,林惠娟,王红丽,提汝媛. 近千年来三个气候特征时期东亚夏季风的模拟对比[J]. 地球科学进展, 2010, 25(10): 1082-1090.
[14] 曲维政;陈璐;黄菲;张微;朱小洁;邓声贵;杜凌. 南半球对流层气候年代际变化及其与太阳活动的联系[J]. 地球科学进展, 2005, 20(7): 794-803.
[15] 黄先香;施能;顾骏强;高鸿. 1948—2001年全球大尺度区域 6~8月降水的长期变化[J]. 地球科学进展, 2004, 19(5): 824-830.
阅读次数
全文


摘要