地球科学进展 ›› 2015, Vol. 30 ›› Issue (8): 863 -877. doi: 10.11867/j.issn.1001-8166.2015.08.0863

综述与评述 上一篇    下一篇

地下水渗透反应格栅技术发展综述
刘菲 1, 陈亮 2, 王广才 1, 陈鸿汉 1   
  1. 1. 中国地质大学(北京)水资源与环境学院,北京 100083; 2. 天津大学水利工程仿真与安全国家重点实验室,建筑工程学院,天津 300072; 3. University of Waterloo, Waterloo, ON, Canada
  • 收稿日期:2015-02-09 出版日期:2015-09-15
  • 基金资助:

    国家自然科学基金项目“设施化农业区包气带孔隙介质中赤霉素运移机理的研究”(编号:41302199)和“地下水中高氯酸盐的化学还原强化生物修复机理研究”(编号:41272268)资助

Permeable Reactive Barrier for Groundwater Pollution Remediation: An Review

Liu Fei 1, Chen Liang 2, Wang Guangcai 1, Chen Honghan 1, Robert W. Gillham 3   

  1. 1. School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China; 2.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin, 300072, China; 3. University of Waterloo, Waterloo, ON, Canada
  • Received:2015-02-09 Online:2015-09-15 Published:2015-09-15

面对日益严重的地下水污染,地下水渗透反应格栅技术作为一种原位、简易、被动技术在地下水污染修复中被广泛研究和应用。依据渗透反应格栅技术的定义及发展历程,渗透反应格栅技术的发展大致可以分为2个阶段,即2000年以前的传统零价铁渗透反应格栅阶段和2000年以后的新型复合介质渗透反应格栅阶段。伴随地下水污染形势的日益复杂化,以及渗透反应格栅技术的不断应用和材料科学等其他学科的飞速发展,未来渗透反应格栅技术的发展将主要集中于复合介质与新介质的开发、组合式渗透反应格栅技术的研发、渗透反应格栅技术与其他修复技术的联用以及渗透反应格栅工程的长期监测及管理。

As an in situ, simple and passive technology, Permeable Reactive Barrier (PRB) is becoming widely used in groundwater remediation. Based on its definition and development process, the development of PRB can be divided into two stages: The traditional zero-valent iron PRB before 2000 and the PRB composed of novel mixed media after 2000. With the rapid worsening of groundwater pollution, the increasing application of PRB and the rapid development of materials science, the development of PRB technology in future will be mainly focused on the investigation of mixed and novel media, the design of mixed PRBs, the combination of PRB technology with other remediation technology, and the longterm monitoring and management of PRB projects.

中图分类号: 

[1] Qiu J. China faces up to groundwater crisis[J]. Nature News, 2010,466(7 304): 308.
[2] Wen Dongguang, Lin Liangjun, Sun Jichao, et al. Groundwater quality and contamination assessment in the main plains of estern China[J]. Earth Science—Journal of China University of Geosciences, 2012, 37(2): 220-228.[文冬光, 林良俊, 孙继朝, 等. 中国东部主要平原地下水质量与污染评价[J]. 地球科学——中国地质大学学报, 2012, 37(2): 220-228.]
[3] Bi E, Liu Y, He J, et al. Screening of emerging volatile organic contaminants in shallow groundwater in east China[J]. Groundwater Monitoring & Remediation, 2012, 32(1):53-58.
[4] Zhang Zhaoji, Fei Yuhong, Guo Chunyan, et al. Regional groundwater contamination assessment in the north China plain[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(5): 1 456-1 461.[张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报:地球科学版, 2012, 42(5): 1 456-1 461.]
[5] Chen L, Jin S, Liu Y L, et al. Presence of semi-volatile organic contaminants in shallow groundwater of selected regions in China[J]. Groundwater Monitoring & Remediation, 2014, 34(4): 33-43.
[6] U.S. EPA. Field Applications of In-Situ Remediation Technologies: Permeable Reactive Barriers[R/OL]. Washington DC:U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office,2002. http:∥www.clu-in.info/download/rtdf/fieldapp_prb.pdf.
[7] Powell R M, Puls R W, Blowes D W, et al. Permeable Reactive Barrier Technologies for Contaminant Remediation. Office of Research and Development, Office of Solid Waste and Emergency Response[R/OL]. Washington DC: U.S. EPA, 1998. https:∥clu-in.org/download/rtdf/prb/reactbar.pdf.
[8] Interstate Technology and Regulatory Council (ITRC). Permeable Reactive Barriers: Lessons Learned/New Directions. PRB-4. Permeable Reactive Barriers Team[R/OL]. Washington DC, 2005. https:∥www.itrcweb.org.
[9] Archer W L, Harter M K. Reactivity of carbon tetrachloride with a series of metals[J]. Corrosion, 1978, 34(5): 159-162.
[10] Archer W L. Aluminum-1, 1, 1-trichloroethane. Reactions and inhibition[J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21(4): 670-672.
[11] Sweeny K H, Fischer J R. Reductive degradation of halogenated pesticides[P].U.S. Patent 3,640,821. 1972-2-8.
[12] Reynolds G W, Hoff J T, Gillham R W. Sampling bias caused by materials used to monitor halocarbons in groundwater[J]. Environmental Science & Technology, 1990, 24(1): 135-142.
[13] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zerovalent iron[J]. Ground Water, 1994, 32(6): 958-967.
[14] O’Hannesin S F, Gillham R W. Long-term performance of an in situ “iron wall” for remediation of VOCs[J]. Ground Water, 1998, 36(1): 164-170.
[15] Warner S D, Longino B L, Zhang M, et al. The first commercial permeable reactive barrier composed of granular iron: Hydraulic and chemical performance at 10 years of operation[J]. IAHS Publication, 2005, 298: 32.
[16] Gillham R W, Vogan J, Gui L, et al. Iron barrier walls for chlorinated solvent remediation[M]∥Stroo H, Ward C H, eds. Situ Remediation of Chlorinated Solvent Plumes. New York: Springer-Verlag, 2010: 537-571.
[17] Chen L, Liu F, Liu Y, et al. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier[J]. Journal of Hazardous Materials, 2011, 188(1): 110-115.
[18] Obiri-Nyarko F, Grajales-Mesa S J, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 2014, 111: 243-259.
[19] Odziemkowski M S, Gillham R W, Focht R. Electroless hydrogenation of trichloroethylene by Fe-Ni (P) galvanic couples[J]. Environmental Issues in the Electronics/Semiconductor Industries and Electrochemical/Photochemical Methods for Pollution Abatement, 1998, 98: 91-102.
[20] Thiruvenkatachari R, Vigneswaran S, Naidu R. Review: Permeable reactive barrier for groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156.
[21] Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2 154-2 156.
[22] Careghini A, Saponaro S, Sezenna E. Biobarriers for groundwater treatment: A review[J]. Water Science & Technology, 2012, 67(3): 453-468.
[23] Ritter K, Odziemkowski M S, Simpgraga R, et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron[J]. Journal of Contaminant Hydrology, 2003, 65(1): 121-136.
[24] Noubactep C. The fundamental mechanism of aqueous contaminant removal by metallic iron[J]. Water SA, 2010,36(5): 663-670.
[25] Phillips D H, Nooten T V, Bastiaens L, et al. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater[J]. Environmental Science & Technology, 2010, 44(10): 3 861-3 869.
[26] Wilkin R T, Acree S D, Ross R R, et al. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[J]. Science of the Total Environment, 2014, 468: 186-194.
[27] Farrell J, Kason M, Melitas N, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene[J]. Environmental Science and Technology, 2000, 34(3): 514-521.
[28] Liu Fei. Study on Volatile Chlorinated Hydrocarbons in Groundwater Using the Permeable Reactive Barrier of Zero Valence Iron[D]. Beijing: China University of Geosciences, 2002.[刘菲. 处理地下水中挥发性氯代脂肪烃的零价铁渗透反应格栅研究[D]. 北京:中国地质大学(北京), 2002.]
[29] Burris D R, Allen-King R M, Manoranjan V S, et al. Chlorinated ethene reduction by cast iron: Sorption and mass transfer[J]. Journal of Environmental Engineering, 1998, 124(10): 1 012-1 019.
[30] Agrawal A, Tratnyek P G. Reduction of nitro-aromatic compounds by zero-valent iron metal[J]. Environmental Science & Technology, 1995, 30(1): 153-160.
[31] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2 045-2 053.
[32] Su C, Puls R W. Kinetics of trichloroethylene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33: 163-168.
[33] Geiger C L, Ruiz N E, Clausen C A, et al. Ultrasound pretreatment of elemental iron: Kinetic studies of dehalogenation reaction enhancement and surface effects[J]. Water Research, 2002, 36 (5): 1 342-1 350.
[34] Lin C J, Lo S L. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Research, 2005, 39(6): 1 037-1 046.
[35] Ruiz N, Seal S, Reinhart D. Surface chemical reactivity in selected zero-valent iron samples used in groundwater remediation[J]. Journal of Hazardous Materials, 2000, B80: 107-117.
[36] Támara M L, Butler E C. Effects of iron purity and groundwater characteristics on rates and products in the degradation of carbon tetrachloride by iron metal[J]. Environmental Science & Technology, 2004, 38(6): 1 866-1 876.
[37] Parbs A, Ebert M, Dahmke A. Long-term effects of dissolved carbonate species on the degradation of trichloroethylene by zerovalent iron[J]. Environmental Science & Technology, 2007, 41(1): 291-296.
[38] Vikesland P J, Klausen J, Zimmermann H, et al. Longevity of granular iron in groundwater treatment processes: Changes in solute transport properties over time[J]. Journal of Contaminant Hydrology, 2003, 64(1): 3-33.
[39] Chen J L, Al-Abed S R, Ryan A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials, 2001, 83(3): 243-254.
[40] Deng B, Burris D R, Campbell T J. Reduction of vinyl chloride in metallic iron-water systems[J]. Environmental Science & Technology, 1999, 33(15): 2 651-2 656.
[41] Gotpagar J, Grulke E, Tsang T, et al. Reductive dehalogenation of trichloroethylene using zero valent iron[J]. Environmental Progress, 1997, 16(2): 137-143.
[42] Kenneke J F, Mccutcheon S C. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer[J]. Environmental Science & Technology, 2003, 37 (12): 2 829-2 835.
[43] Thangavadivel K, Wang W H, Birke V, et al. A comparative study of Trichloroethylene (TCE) degradation in contaminated Groundwater (GW) and TCE-Spiked deionised water using Zero Valent Iron (ZVI) under various mass transport Conditions[J]. Water, Air, and Soil Pollution, 2013, 224(12): 1-9.
[44] Lu Q, Gui L, Gillham R W. Effects of nitrate on trichloroethylene degradation by granular iron[J]. Earth Science Frontiers, 2005, 12(Suppl.1): 176-183.[Lu Q, Gui L, Gillham R W. 硝酸根对颗粒状铁降解三氯乙烯的影响[J]. 地学前缘, 2005, 12(增刊1): 176-183.]
[45] Luo H P, Jin S, Fallgren P H, et al. Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J]. Chemical Engineering Journal, 2010, 160 (1):185-189.
[46] Weber A, Ruhl A S, Amos R T. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling[J]. Journal of Contaminant Hydrology, 2013, 151: 68-82.
[47] Liu Yulong. Studies on Removal of Mixed Plume Formed by Benzene, Toluene and Chlorinated Ethylenes in Groundwater[D]. Beijing: China University of Geosciences, 2010.[刘玉龙. 去除地下水中苯、甲苯和氯代乙烯烃混合污染羽的实验研究[D]. 北京: 中国地质大学(北京),2010. ]
[48] Reardon E J. Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates[J]. Environmental Science & Technology, 1995, 29(12): 2 936-2 945.
[49] Johnson T L, Fish W, Gorby Y A, et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology, 1998, 29(4): 379-398.
[50] Lipczynska-Kochany E, Harms S, Milburn R, et al. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J]. Chemosphere, 1994, 29(7): 1 477-1 489.
[51] Deng B, Hu S, Burris D R. Effect of Iron Corrosion Inhibitors on Trichloroethylene Reduction[M]. Columbus: Battelle Press, 1998.
[52] Kohn T, Lynn Roberts A. The effect of silica on the degradation of organohalides in granular iron columns[J]. Journal of Contaminant Hydrology, 2006, 83(1): 70-88.
[53] Li Z, Willms C, Alley J, et al. A shift in pathway of iron-mediated perchloroethylene reduction in the presence of sorbed surfactant—A column study[J]. Water Research, 2006, 40(20): 3 811-3 819.
[54] Dries J, Bastiaens L, Springael D, et al. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems[J]. Environmental Science & Technology, 2004, 38(10): 2 879-2 884.
[55] Clark C J, Raob P S C, Annable M D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron[J]. Journal of Hazardous Materials, 2003, 96(1): 65-78.
[56] Chen Liang. Microbial Passivation Analysis and Electrochemical Depassivation of Iron in ZVI PRB[D]. Beijing: China University of Geosciences, 2012.[陈亮. 零价铁渗透反应格栅中铁的微生物钝化效应及电活化技术[D].北京:中国地质大学(北京), 2012.]
[57] van Nooten T, Lieben F, Dries J, et al. Impact of microbial activities on the mineralogy and performance of column-scale permeable reactive iron barriers operated under two different redox conditions[J].Environmental Science & Technology, 2007, 41(16): 5 724-5 730.
[58] Muchitsch N, Van Nooten T, Bastiaens L,et al. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with Chlorinated Aliphatic Hydrocarbons (CAHs)[J]. Journal of Contaminant Hydrology, 2011, 126(3): 258-270.
[59] Wilkin R T, Puls R W, Sewell G W. Long-term performance of permeable reactive barriers using zero-valent iron: Geochemical and microbiological effects[J]. Ground Water, 2003, 41(4): 493-503.
[60] Johnson R L, Thoms R B, Johnson R O, et al. Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier[J]. Ground Water Monitoring and Remediation, 2008, 28(3): 56-64.
[61] Chen L, Jin S, Fallgren P H, et al. Passivation of ZVI by denitrifying bacteria and the impact on trichloroethene reduction in groundwater[J]. Water Science & Technology, 2013, 67(6): 1 254-1 259.
[62] Blowes D W, Ptacek C J, Benner S G, et al. Treatment of inorganic contaminants using permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2000, 45(1): 123-137.
[63] Bilardi S, Amos R T, Blowes D W, et al. Reactive transport modeling of ZVI column experiments for nickel remediation[J]. Groundwater Monitoring & Remediation, 2013, 33(1): 97-104.
[64] Su C, Puls R W. Arsenate and arsenite removal by zero valent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(7): 1 487-1 492.
[65] Su C, Puls R W. Significance of iron(II, III) hydroxycarbonate green rust in arsenic remediation using zero valent iron in laboratory column tests[J]. Environmental Science & Technology, 2004, 38(19): 5 224-5 231.
[66] Wilkin R T, McNeil M S. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage[J]. Chemosphere, 2013, 53(7): 715-725.
[67] Sun H, Wang L, Zhang R, et al. Treatment of groundwater polluted by arsenic compounds by zero valent iron[J]. Journal of Hazardous Materials, 2006, 129(1/3): 297-303.
[68] Yang J E, Kim J S, Ok Y S, et al. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons[J]. Water Science & Technology,2007, 55(1/2): 197-202.
[69] Li X Q, Zhang W X. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19): 6 939-6 946.
[70] Ludwig R D, Smyth D J A, Blowes D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB[J]. Environmental Science & Technology, 2009, 43 (6): 1 970-1 976.
[71] Cheng I F, Muftikian R, Fernando Q, et al. Reduction of nitrate to ammonia by zero-valent iron[J]. Chemosphere, 1997, 35(11): 2 689-2 695.
[72] Liao C H, Kang S F, Hsu Y W. Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide[J]. Water Research, 2003, 37(17): 4 109-4 118.
[73] Suzuki T, Moribe M, Oyama Y, et al. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies[J]. Chemical Engineering Journal, 2012, 183: 271-277.
[74] Bhatnagar A, Sillanp M. A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal, 2011, 168(2): 493-504.
[75] Gandhi S, Oh B T, Schnoor J L, et al. Degradation of TCE, Cr (VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions[J]. Water Research, 2002, 36(8): 1 973-1 982.
[76] Van Nooten T, Springael D, Bastiaens L. Microbial community characterization in a pilot-scale permeable reactive iron barrier[J]. Environmental Engineering Science, 2010, 27(3): 287-292.
[77] Jeen S W, Gillham R W, Przepiora A. Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation[J]. Journal of Contaminant Hydrology, 2011, 123(1): 50-64.
[78] Yin W, Wu J, Li P, et al. Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: The effects of pH, iron dosage, oxygen and common dissolved anions[J]. Chemical Engineering Journal, 2012, 184: 198-204.
[79] Fu F, Dionysiou D D, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205.
[80] Yin W, Wu J, Huang W, et al. Enhanced nitrobenzene removal and column longevity by coupled abiotic and biotic processes in zero-valent iron column[J]. Chemical Engineering Journal, 2015, 259: 417-423.
[81] Epolito W J, Yang H, Bottomley L A, et al. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye reactive blue 4[J]. Journal of Hazardous Materials, 2008, 160(2): 594-600.
[82] Scherer M M, Richter S, Valentine R L, et al. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up[J]. Critical Reviews in Microbiology, 2000, 26(4): 221-264.
[83] Arora M, Snape I, Stevens G W. The effect of temperature on toluene sorption by granular activated carbon and its use in permeable reactive barriers in cold regions[J]. Cold Regions Science and Technology, 2011, 66(1): 12-16.
[84] Morris E A, Kirk D W, Jia C Q, et al. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon[J]. Environmental Science & Technology, 2012, 46(14): 7 905-7 912.
[85] Bortone I, Di Nardo A, Di Natale M, et al. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon[J]. Journal of Hazardous Materials, 2013, 260: 914-920.
[86] Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances[J]. Chemical Engineering Journal, 2011, 178: 204-209.
[87] Vignola R, Bagatin R, De Folly D’Auris A, et al. Zeolites in a Permeable Reactive Barrier (PRB): One-year of field experience in a refinery groundwater. Part 2: Zeolite characterization[J]. Chemical Engineering Journal, 2011, 178: 210-216.
[88] Hou G, Liu F, Liu M, et al. Performance of a permeable reactive barrier for in situ removal of ammonium in groundwater[J]. Water Science & Technology: Water Supply, 2014, 14(4): 585-592.
[89] Li S, Huang G, Kong X, et al. Ammonium removal from groundwater using a zeolite permeable reactive barrier: A pilot-scale demonstration[J]. Water Science & Technology, 2014, 70(9): 1 540-1 547.
[90] Misaelides P. Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144(1): 15-18.
[91] Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in groundwater: A review[J]. Bioresource Technology, 2008, 99(13): 5 296-5 308.
[92] Johnson D B, Hallberg K B. Acid mine drainage remediation options: A review[J]. Science of the Total Environment, 2005, 338(1): 3-14.
[93] Benner S G, Blowes D W, Ptacek C J, et al. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier[J]. Applied Geochemistry, 2002, 17(3): 301-320.
[94] Robertson W D, Vogan J L, Lombardo P S. Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate[J]. Groundwater Monitoring and Remediation, 2008, 28(3): 65-72.
[95] Lojkasek-Lima P, Aravena R, Shouakar-Stash O, et al. Evaluating TCE abiotic and biotic degradation pathways in a permeable reactive barrier using compound specific isotope analysis[J]. Groundwater Monitoring and Remediation, 2012, 32(4): 53-62.
[96] Xin B P, Wu C H, Wu C H, et al. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead[J].Journal of Hazardous Materials, 2013, 244:765-772.
[97] Xie Li, Liu Fei, Liu Yulong. Improving property of filler in oxygen-releasing permeable reactive barrier[J]. Environmental Science & Technology, 2010, 33(2): 44-48.[谢李, 刘菲, 刘玉龙. 释氧渗透反应格栅填料的改进研究[J]. 环境科学与技术, 2010, 33(2): 44-48.]
[98] Kong Xiangke, Ma Jianfei, Yang Yingzhao, et al. Laboratory column study for evaluating a bio-chemical permeable reactive barrier to remove ammonium from groundwater[J]. Environmental Science & Technology, 2012, 35(12): 1-5.[孔祥科, 马剑飞, 杨应钊, 等. 渗透反应格栅去除地下水中铵的化学生物联合柱研究[J]. 环境科学与技术, 2012, 35(12): 1-5.]
[99] Kong Xiangke, Zhang Ying, Bi Erping. Optimization of oxygen-releasing materials and pH regulation in groundwater remediation system[J]. Chinese Journal of Environmental Engineering, 2012, 6 (9): 2 935-2 940.[孔祥科, 张英, 毕二平. 地下水修复系统中释氧材料的改进及 pH 调控[J]. 环境工程学报, 2012, 6 (9): 2 935-2 940.]
[100] Yang Yingzhao, Liu Fei, Kong Xiangke, et al. Transformation and existing from of ammonia-N in a multi-media permeable reactive barrier[J]. Chinese Journal of Environmental Engineering, 2013, 7 (8): 2 931-2 936.[杨应钊, 刘菲, 孔祥科, 等. 多介质渗透反应格栅中氨氮的转化与存在形态[J]. 环境工程学报, 2013, 7(8): 2 931-2 936.]
[101] Borden R C, Goin R T, Kao C M. Control of BTEX migration using a biologically enhanced permeable barrier[J]. Groundwater Monitoring & Remediation, 1997, 17(1): 70-80.
[102] He Y T, Wilson J T, Wilkin R T. Transformation of reactive iron minerals in a permeable reactive barrier (biowall) used to treat TCE in groundwater[J]. Environmental Science & Technology, 2008, 42(17): 6 690-6 696.
[103] Elliott D W, Zhang W. Field assessment of nanoscale bimetallic particles for groundwater treatment[J]. Environmental Science & Technology, 2001, 35(24): 4 922-4 926.
[104] Nanotechnology Workgroup. U.S. Environmental Protection Agency Nanotechnology White Paper[C]. Washington DC: U.S. Environmental Protection Agency,2007.
[105] Li Yunchun, Wang Xianxiang, Zhao Maojun. Influence factors on the in-situ remediation of halogenated organic compounds by nanoscale zero valent iron[J].Advances in Earth Science, 2013, 28(10): 1 106-1 118.[李云春, 王显祥, 赵茂俊. 纳米零价铁原位修复有机卤化物的影响因素[J]. 地球科学进展, 2013, 28(10): 1 106-1 118.]
[106] Shu H Y, Chang M C, Yu H H, et al. Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles[J]. Journal of Colloid and Interface Science, 2007, 314 (1): 89-97.
[107] Lin Y T, Weng C H, Chen F Y. Effective removal of AB24 dye by nano/micro-size zero-valent iron[J]. Separation and Purification Technology, 2008, 64(1): 26-30.
[108] Johnson R L, Nurmi J T, O’Brien Johnson, et al. Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron[J]. Environmental Science & Technology, 2013, 47(3): 1 573-1 580.
[109] Kanel S R, Choi H. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media[J]. Water Science & Technology, 2007, 55(1): 157-162.
[110] Chang D, Chen T, Liu H, et al. A new approach to prepare ZVI and its application in removal of Cr (VI) from aqueous solution[J]. Chemical Engineering Journal, 2014, 244: 264-272.
[111] Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009, 43(15): 3 717-3 726.
[112] Comba S, Dalmazzo D, Santagata E. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media[J]. Journal of Hazardous Materials, 2011, 185(2): 598-605.
[113] Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4 927-4 933.
[114] Chen J, Xiu Z, Lowry G V, et al. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron[J]. Water Research, 2011, 45(5): 1 995-2 001.
[115] SaccM L, Fajardo C, Costa G, et al. Integrating classical and molecular approaches to evaluate the impact of nanosized zero-valent iron (nZVI) on soil organisms[J]. Chemosphere, 2014, 104: 184-189.
[116] Truex M J, Vermeul V R, Mendoza D P, et al. Injection of Zero-Valent Iron into an unconfined aquifer using shear—Thinning fluids[J].Groundwater Monitoring and Remediation, 2011, 31(1): 50-58.
[117] Velimirovic M, Simons Q, Bastiaens L. Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study[J]. Journal of Hazardous Materials, 2014, 265: 20-29.
[118] Comba S, Braun J. An empirical model to predict the distribution of iron micro-particles around an injection well in a sandy aquifer[J]. Journal of Contaminant Hydrology, 2012, 132: 1-11.
[119] Comba S, Braun J. A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles[J]. Journal of Contaminant Hydrology, 2012, 140: 1-11.
[120] Vecchia E D, Luna M, Sethi R. Transport in porous media of highly concentrated iron micro-and nanoparticles in the presence of xanthan gum[J]. Environmental Science & Technology, 2009, 43(23): 8 942-8 947.
[121] Chen K F, Li S, Zhang W X. Renewable hydrogen generation by bimetallic zero valent iron nanoparticles[J]. Chemical Engineering Journal, 2011, 170(2): 562-567.
[122] Hsieh S H, Horng J J. Deposition of Fe-Ni nanoparticles on Al 2 O 3 for dechlorination of chloroform and trichloroethylene[J]. Applied Surface Science, 2006, 253(3): 1 660-1 665.
[123] Nutt M O, Hughes J B, Wong M S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination[J]. Environmental Science & Technology, 2005, 39: 1 346-1 353.
[124] He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water[J]. Environmental Science & Technology, 2005, 39(9): 3 314-3 320.
[125] Nie X, Liu J, Zeng X, et al. Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles[J]. Journal of Environmental Sciences, 2013, 25(3): 473-478.
[126] Xu F, Deng S, Xu J, et al. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol[J]. Environmental Science & Technology, 2012, 46 (8): 4 576-4 582.
[127] Coles C A, Ramachandra Rao S, Yong R N. Lead and cadmium interactions with mackinawite: Retention mechanisms and the role of pH[J]. Environmental Science & Technology, 2000, 34(6): 996-1 000.
[128] Liu J R, Valsaraj K T, Devai I, et al. Immobilization of aqueous Hg(II) by mackinawite (FeS)[J]. Journal of Hazardous Materials, 2008, 157(2): 432-440.
[129] Gallegos T J, Hyun S P, Hayes K F. Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite[J]. Environmental Science & Technology, 2007, 41(22): 7 781-7 786.
[130] Han Y S, Gallegos T J, Demond A H, et al. FeS-coated sand for removal of arsenic (III) under anaerobic conditions in permeable reactive barriers[J]. Water Research, 2011, 45(2): 593-604.
[131] Jeong H Y, Klaue B, Blum J D, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS)[J]. Environmental Science & Technology, 2007, 41(22): 7 699-7 7 05.
[132] Elsner M, Schwarzenbach R P, Haderlein S B. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants[J]. Environmental Science & Technology, 2004, 38(3): 799-807.
[133] Henderson A D, Demond A H. Permeability of iron sulfide (FeS)-based materials for groundwater remediation[J]. Water Research, 2013, 47(3): 1 267-1 276.
[134] Oostrom M, Wietsma T W, Covert M A, et al. Zero-valent iron emplacement in permeable porous media using polymer additions[J]. Groundwater Monitoring and Remediation, 2007,27(1): 122-130.
[135] Yang J, Cao L, Guo R, et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2, 4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010, 184(1): 782-787.
[136] Zhou D, Li Y, Zhang Y, et al. Column test-based optimization of the Permeable Reactive Barrier (PRB) technique for remediating groundwater contaminated by landfill leachates[J]. Journal of Contaminant Hydrology, 2014, 168: 1-16.
[137] Liu S J, Jiang B, Huang G Q, et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. Water Research, 2006, 40(18): 3 401-3 408.
[138] Liu Zhibin, Fang Wei, Chen Zhilong. Advances in air spaerging technology of saturated zone[J]. Advances in Earth Science, 2013, 28(10): 1 154-1 159.[刘志彬, 方伟, 陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1 154-1 159.]
[139] Huling S G, Arnold R G, Sierka R A, et al. Contaminant adsorption and oxidation via Fenton reaction[J]. Journal of Environmental Engineering, 2000, 126(7): 595-600.
[140] Chiu C A, Hristovski K, Huling S, et al. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst[J]. Water Research, 2013, 47(4): 1 596-1 603.
[141] Anfruns A, Garcia-Suarez E J, Montes-Morn M A, et al. New insights into the influence of activated carbon surface oxygen groups on H 2 O 2 decomposition and oxidation of pre-adsorbed volatile organic compounds[J]. Carbon, 2014, 77: 89-98.
[142] Gao Fei, Liu Fei, Chen Honghan. Progress on remediation of Trichloroethene (TCE) in soil and groundwater contaminated source area[J]. Advances in Earth Science, 2008, 23(8): 821-829.[高霏, 刘菲, 陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.]
[143] Do S H,Kwon Y J,Kong S H.Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination:Adsorptive and catalytic characteristics of waste-reclaimed adsorbent[J].Journal of Hazardous Materials,2011,191(1):19-25.
[144] Jiang X, Qiao J, Lo I M, et al. Enhanced paramagnetic Cu 2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. Journal of Hazardous Materials, 2015, 283: 880-887.
[145] Liang L, Guan X, Shi Z, et al. Coupled effects of aging and weak magnetic fields on sequestration of selenite by Zero-Valent iron[J]. Environmental Science & Technology, 2014, 48(11): 6 326-6 334.
[146] Liang L, Sun W, Guan X, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron[J]. Water Research, 2014, 49: 371-380.
[147] Ruiz C, Mena E, Caizares P, et al. Removal of 2, 4, 6-trichlorophenol from spiked clay soils by electrokinetic soil flushing assisted with granular activated carbon permeable reactive barrier[J]. Industrial and Engineering Chemistry Research, 2013, 53(2): 840-846.
[148] García Y, Ruiz C, Mena E, et al. Removal of nitrates from spiked clay soils by coupling electrokinetic and permeable reactive barrier technologies[J]. Journal of Chemical Technology and Biotechnology, 2014,90(9):1 719-1 726.
[149] Mena E, Ruiz C, Villaseor J, et al. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil[J]. Journal of Hazardous Materials, 2015, 283: 131-139.
[150] Chen L, Jin S, Fallgren P H, et al. Electrochemical depassivation of zero-valent iron for trichloroethene reduction[J]. Journal of Hazardous Materials, 2012, 239: 265-269.
[151] Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41.[覃荣高,曹广祝,仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.]

[1] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[2] 涂梦昭,刘志锋,何春阳,任强,卢文路. 基于 GRACE卫星数据的中国地下水储量监测进展[J]. 地球科学进展, 2020, 35(6): 643-656.
[3] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[4] 曹天正, 韩冬梅, 宋献方, 刘伟, 杜荻. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.
[5] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[6] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[7] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[8] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[9] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[10] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[11] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[12] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[13] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[14] 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6): 636-646.
[15] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
阅读次数
全文


摘要