地球科学进展 ›› 2013, Vol. 28 ›› Issue (4): 477 -489. doi: 10.11867/j.issn.1001-8166.2013.04.0477

研究论文 上一篇    下一篇

南华冰期的底界讨论:来自沉积学与同位素年代学证据
汪正江 1,许效松 1,杜秋定 1,杨菲 1,2,邓奇 1,3,伍皓 1,3,周小琳 1   
  1. 1. 国土资源部成都地质矿产研究所, 四川成都610082;2. 山东科技大学研究生院, 山东青岛266510; 3. 中国地质科学院研究生部, 北京100037
  • 收稿日期:2012-12-26 修回日期:2013-03-03 出版日期:2013-04-10
  • 通讯作者: 汪正江(1969-), 男, 安徽六安人,研究员, 主要从事沉积大地构造学和石油地质学研究. E-mail:wzjcf825@163.com
  • 基金资助:

    国家自然科学基金面上项目“黔东新元古代中期沉积盆地演化与地层划分对比研究”(编号:41072088);国家自然科学基金重点项目“华南新元古代楔状地层沉积序列及其大地构造属性研究”(编号:41030315) 资助.

Discussion on the Bottom of Nanhua System: Evidences from Sedimentology and Isotopic Geochronology

Wang Zhengjiang 1, Xu Xiaosong 1, Du Qiuding 1, Yang Fei 1,2, Deng Qi 1,3,Wu Hao 1,3, Zhou Xiaolin 1   

  1. 1.Chengdu Institute of Geology and Mineral Resources, Ministry of Land and Resources PRC, 
    Chengdu610082, China;  2.Graduate Faculty of Shandong University of Science and Technology, Qingdao266510, China;
    3. Graduate Faculty of Chinese Academy of Geological Sciences, Beijing100037, China)[JZ)]
  • Received:2012-12-26 Revised:2013-03-03 Online:2013-04-10 Published:2013-04-10

目前国内对于我国新元古代南华系划分的分歧很大,主要原因之一在于对板溪群及其相当层位地层的构造属性及其上限年龄的认识存在较大差异,为此,在详细的沉积学调查的基础上,对湘黔桂地区典型丹州群和下江群(与板溪群相当)有关剖面上顶部地层沉凝灰岩开展了锆石年代学研究。沉积学调查表明,板溪期沉积地层与上覆南华冰期沉积地层之间的转换界面清晰,界面上下岩性、结构、构造、沉积相特征迥异,显示板溪群和上覆南华纪冰期沉积期间存在明显的沉积—构造转换过程。而板溪晚期沉凝灰岩的锆石U-Pb 同位素年代学研究则表明,板溪群及其相当层位的上限年龄均趋向于720 Ma,这与Sturtian冰期的启动年龄718 Ma接近。因此,基于沉积盆地演化的阶段性、全球性重要古气候演化的区域可对比性以及同位素年代学分析,将南华冰期启动年龄设定为720 Ma是恰当的,将我国南华系底界置于江口冰期沉积层系之底也是合理的,这为我国南华系底界GSSP的选定提供了重要的年代学和沉积学约束。

At present, it is far from to get an agreement on the subdivision and correlation of Nanhua System, the mainly origins of this dispute are from the different understand to the tectonic attribute and the top limit age of Banxi Group and its equivalents. For this reason, based on the survey of sedimentology, the isotopic geochronology was carried out on the Longli Formation section of Xiajiang Group in Dunzhai of Jinping county, the Gongdong Formation section of Danzhou Group in Piaoli of Longsheng county, and the Gongdong Formation section of Danzhou Group in Pingtan of Tongdao county. The sedimentary survey indicates that the transforming boundary between Banxi Period and Nanhua glacial Period are clear. The petrofacies, petrofabric, sedimentary structure, and sedimentary sequence are greatly different from the upper units to the lower units of the boundary, which suggest obviously this boundary had seen a important sedimentary and tectonic event. At the same time, the isotopic geochronology from the tuffite and tuffaceous rocks of the top units of the Banxi Period make clear that the top limit age of Banxi Group and its equivalents should be tend to 720 Ma, and similar to the onset age 718 Ma of Sturtian glacial epoch. Based on the evolution phases of sedimentary basin, the comparability of global paleoclimate change and the geochronologic data, therefore, it is feasible to settle the bottom of Nanhua System upon the bottom of sedimentary sequence of Jiangkou glacial epoch, and it is also reasonable to put the onset age of Nanhua glacial Period at 720 Ma for the time being, and which would, thus, provide the essential constraints of sedimentology and isotopic geochronology to select the GSSP of Nanhua System.

中图分类号: 

[1]Chinese Commission on Stratigraphy. Chinese Stratigraphic Manual and Its Reference[M]. Beijing: Geological Publishing House, 2001.[全国地层委员会. 中国地层指南及中国地层指南说明书[M]. 北京: 地质出版社, 2001.]

[2]Chinese Commission on Stratigraphy. Chinese Regional Stratigraphic Chart and Its Reference[M]. Beijing: Geological Publishing House, 2002.[全国地层委员会. 中国区域年代地层(地质年代)表说明书[M]. 北京: 地质出版社, 2002.]

[3]Wang Jian, Li Xianhua, Duan Taizhong, et al. New evidences on zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the basal boundary of the “Nanhuan” strata in South China[J]. Chinese Science Bulletin,2003, 48(16): 1 663-1 669.

[4]Wang Jian, Zeng Shaoguang, Chen Wenxi, et al. The Neoproterozoic rift systems in southern China: New evidence for the sedimentary onlap and its initial age[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(4): 1-7.[王剑, 曾昭光, 陈文西, 等. 华南新元古代裂谷系沉积超覆作用及其开启年龄新证据[J]. 沉积与特提斯地质, 2006, 26(4): 1-7.]

[5]Wang Jian, Pan Guitang. Neoproterozoic South China Paleocontinents: An overview[J]. Acta Sedimentologica Sinica, 2009, 27(5): 818-825.[王剑, 潘桂堂. 中国南方古大陆研究进展与问题评述[J]. 沉积学报, 2009, 27(5): 818-825.]

[6]Li Xianhua. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia assembly[J]. Precambrian Research, 1999, 97: 43-57.

[7]Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, et al. LA-ICPMS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for petrogenesis and tectonic evolution[J]. Precambrian Research, 2006, 145: 111-130.

[8]Li Wuxian, Li Xianhua, Li Zhengxiang. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 2005, 136(1): 51-66.

[9]Li Wuxian, Li Xianhua, Li Zhengxiang. Middle Neoproterozoic syn-rifting volcanic rocks in Guangfeng, South China: Petrogenesis and tectonic significance[J]. Geology Magazine, 2008, 145(4):475-489.

[10]Wang Jian, Li Zhengxiang. History of neoproterzoic rift basins in South China: Implications for rodinia breakup[J]. Precambrian Research, 2003, 122: 141-158.

[11]Yin Chongyu, Liu Dunyi, Gao Linzhi, et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage: Evidence from SHRIMPⅡ dating[J]. Chinese Science Bulletin, 2003,48(16):1 657-1 662.

[12]Xue Yaosong, Cao Ruiji, Tang Tianfu. The Sinian stratigraphic sequence on the Yangtze region and correlation to the late Precambrian strata of North China[J]. Journal of Stratigraphy, 2001, 25(3): 207-216.[薛耀松, 曹瑞骥, 唐天福. 扬子区震旦纪地层序列和南、北方震旦系对比[J]. 地层学杂志, 2001, 25(3): 207-216.]

[13]Peng Xuejun, Liu Yaorong, Wu Nengjie, et al. Correlation of the Nanhuan strata on the southern margin of Yangtze Block[J]. Journal of Stratigraphy, 2004, 28(4): 354-359.[彭学军, 刘耀荣, 吴能杰, 等. 扬子陆块东南缘南华系地层对比[J]. 地层学杂志, 2004, 28(4): 354-359.]

[14]Zhang Qirui, Chu Xuelei. The stratigraphic classification and correlation of the Jiangkou glaciation in the Yangtze Block and the stratotype section of the Nanhuan System[J]. Journal of Stratigraphy, 2006, 30(4): 306-314.[张启锐, 储雪蕾. 扬子地区江口冰期地层的划分对比与南华系层型剖面[J]. 地层学杂志, 2006, 30(4): 306-314.]

[15]Zhang Qirui, Chu Xuelei. Problems in defining the Nanhua Period[J]. Journal of Stratigraphy, 2007, 31(3): 321-327.[张启锐, 储雪蕾. 南华系建系问题探讨[J]. 地层学杂志, 2007, 31(3): 321-327.] 

[16]Huang Jing, Chu Xuelei, Zhang Qirui, et al. Constraints on the age of Neoproterozoic global glaciations[J]. Earth Science Frontiers, 2007, 14(2): 249-256.[黄晶, 储雪蕾, 张启锐, 等. 新元古代冰期及其年代[J]. 地学前缘, 2007, 14(2): 249-256.]

[17]Wang Zhengjiang. A proposal to establish the Banxi System and discussion on its foundation—Based mainly on studies in eastern Guizhou area[J]. Geological Review, 2008, 54(3): 296-306.[汪正江. 关于建立“板溪系”的建议及其基础的讨论[J]. 地质论评, 2008, 54(3): 296-306.]

[18]Wang Zhengjiang, Jiang Xinsheng, Du Qiuding, et al. Depositional transformation from Banxi Period to Nanhua Glacial Period in Southeast Margin of Yangtze Block and its implications to stratigraphic correlation[J]. Acta Sedimentologica Sinica, 2013, in press.[汪正江, 江新胜, 杜秋定,等. 湘黔桂邻区板溪期与南华冰期之间的沉积转换及其地层学涵义[J]. 沉积学报, 2013,待刊.]

[19]Wang Zhengjiang, Wang Jian, Xie Yuan, et al. SHRIMP zircon U-Pb dating for crystal tuff from Hongzixi Formation of Banxi Group in Xiushan area, Chongqing, and its significance[J]. Geology in China, 2009, 36(4): 761-768.[汪正江, 王剑, 谢渊, 等. 重庆秀山凉桥板溪群红子溪组凝灰SHRIMP锆石测年及其意义[J].中国地质, 2009, 36(4): 761-768.]

[20]Yang Fei, Wang Zhengjiang, Wang Jian, et al. An analysis on property and dynamics of the middle Neoproterozoic sedimentary basin in the western of South China: Constraint from the sedimentary data of Danzhou Group in North Guangxi[J]. Geological Review, 2012, 58(5): 854-864.[杨菲, 汪正江, 王剑, 等. 华南西部新元古代中期沉积盆地性质及其动力学分析——来自桂北丹州群的沉积学制约[J]. 地质论评, 2012, 58(5): 854-864.]

[21]Bureau of Geology and Mineral Resources of Hu’nan. Lithostratigraphy of Hunan Province[M]. Wuhan: Publishing House of China University of GeoScience, 1997.[湖南省地质矿产局. 湖南省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.]

[22]Bureau of Geology and Mineral Resources of Guizhou. Lithostratigraphy of Guizhou Province[M]. Wuhan: China University of Geoscience Press, 1997.[贵州省地质矿产局. 贵州省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.]

[23]Bureau of Geology and Mineral Resources of Guangxi. Regional Geology of Guangxi Zhuang Nationality Autonomous Region[M]. Beijing: Geological Publishing House, 1985.[广西地质矿产局. 广西壮族自治区区域地质志[M].北京: 地质出版社, 1985.]

[24]Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandard Geoanalyzing Research, 2004, 28: 353-370.

[25]Wang Zhengjiang, Wang Jian, Duan Taizhong, et al. Geochronology of middle Neoproterozoic volcanic deposits in Yangtze Craton interior of South China and its implications to tectonic settings[J]. Science in China  (Serise D), 2010, 53 (9): 1 307-1 315.

[26]Li Zhengxiang, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J].Precambrian Research,2008, 160: 179-210

[27]Ernst R E, Wingate M T D, Buchan K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents[J].Precambrian Research,2008, 160: 159-178. 

[28]Wang Zhengjiang, Xie Yuan, Yang Ping, et al. Marine basin evolution and oil and gas geology of Sinian-early Paleozoic Period on the western side of the Xuefeng Mountain[J]. Geological Bulletin of China, 2012, 31(11): 38-54.[汪正江, 谢渊, 杨平, 等. 雪峰山西侧震旦纪—早古生代海相盆地演化与油气地质条件[J]. 地质通报, 2012, 31(11): 38-54.]

[29]Wang Xuance, Li Xianhua, Li Zhengxiang, et al. Episodic Precambrian crust growth: Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 2011,222/223:386-403.

[30]Guizhou Bureau of Geology and Mineral Resources. Regional Geology of Guizhou Province[M]. Beijing: Geological Publishing House, 1987.[贵州省地质矿产局. 贵州省区域地质志[M].北京: 地质出版社, 1987.]

[31]Hu’nan Bureau of Geology and Mineral Resources. Regional Geology of Hu’nan Province[M]. Beijing: Geological Publishing House, 1988:14-40.[湖南省地质矿产局. 湖南省区域地质志[M].北京: 地质出版社, 1988:14-40.]

[32]Zhang Qirui, Li Xianhua, Feng Lianjun, et al. A new age constraint on the onset of the Neoproterozoic glaciations in the Yangtze Platform, South China[J]. Journal of Geology, 2008, 116: 423-429. 

[33]Xu Bei, Xiao Shuhai, Zou Haibo, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research, 2009, 168: 247-258.

[34]Gao Linzhi, Dai Chuangu, Liu Yanxue, et al. Zircon SHRIMP U-Pb dating of the tuffaceous bed of Xiajiang Group in Guizhou Province and its stratigraphic implication[J]. Geology in China, 2010, 37(4): 1 071-1 080.[高林志, 戴传固, 刘燕学, 等. 黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义[J]. 中国地质, 2010, 37(4): 1 071-1 080.]

[35]Wang Lijuan, Griffinb W L, Yu Jinhai, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 2010, 177: 131-144. 

[36]Fanning C M, Link P K. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho[J]. Geology, 2004, 32: 881-884. 

[37]Macdonald F A, Schmitz M D, Crowley J L, et al. Calibrating the cryogenian[J]. Science, 2010, 327: 1 241-1 243.

[38]Zhao Yanyan, Zheng Yongfei. Record and time of Neoproterozoic glaciations on Earth[J]. Acta Petrologica Sinica, 2011, 27(2): 545-565.[赵彦彦, 郑永飞. 全球新元古代冰期的记录和时限[J]. 岩石学报, 2011, 27(2): 545-565.] 

[39]Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. New evidence of deposition under cold climate for the Xieshuihe Formation of the Nanhua System in northwestern Hu’nan, China[J]. Chinese Science Bulletin, 2004, 49:1 420-1 427.

[40]Zhang Qirui, Chu Xuelei, Feng Lianjun. A correlation of the “Xieshuihe Formation”, Nanhua System, with a discussion to its glacial sedimentary structures[J]. Journal of Stratigraphy, 2008, 32(3): 741-747.[张启锐, 储雪蕾, 冯连君. 南华系“渫水河组”的对比及其冰川沉积特征的探讨[J]. 地层学杂志, 2008, 32(3): 741-747.]

[41]Lu Songnian, Li Huaikun, Wang Huichu, et al. Brief introduction and comment on the special reference to the Precambrian subdivision by the International Commission on Stratigraphy[J]. Geological Review, 2005, 51(2): 169-173.[陆松年, 李怀坤, 王惠初, 等. 对国际地层委员会前寒武纪划分参考方案的简介及评述[J]. 地质论评, 2005, 51(2): 169-173.]

[42]Tian Qijun. The relationship between the Xuefeng axis and the Paleozoic transgression[J]. Geological Review, 1948, 13(3/4):203-210.[田奇镌. 湖南雪峰地轴与古生代海侵之关系[J]. 地质论评, 1948, 13(3/4):203-210.]

[43]Yin Zanxun, Xu Daoyi, Pu Qingyu. The document repertory of crustal movements in China[J]. Geological Review, 1965, 23(Suppl.): 20-81.[尹赞勋, 徐道一, 浦庆余. 中国地壳运动名称资料汇编[J]. 地质论评, 1965, 23(增刊): 20-81.] 

[44]Jiang Xinsheng, Wang Jian, Cui Xiaozhuang, et al. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province (SW China) and its geological significance[J]. Science in China  (Serise D), 2012, 55(11): 1 815-1 826.

[45]Li Zhengxiang, Li Xianhua, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlationswith other continents: Evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research,2003,122: 85-109. 

[46]Zhang Chuanlin, Li Huaikun, Wang Hongyan. A review on Precambrian tectonic evolution of Tarim Block: Possibility of interaction between Neoproterozoic plate subduction and mantle plume[J]. Geological Review, 2012, 58(5): 923-936.[张传林, 李怀坤, 王洪燕. 塔里木地块前寒武纪地质研究进展评述[J]. 地质论评, 2012, 58(5): 923-936.]

[1] 赵奇,闫义. 伊利石 K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.
[2] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[3] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[4] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[5] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[6] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[7] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[8] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[9] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[10] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[11] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[12] 杨宏宇, 赵晖, 王兴繁, 耿建伟. 光释光测年中石英颗粒全球标准曲线法(gSGC)与单片再生法(SAR)等效剂量(D e)的比对[J]. 地球科学进展, 2017, 32(10): 1111-1118.
[13] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[14] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[15] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
阅读次数
全文


摘要