地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1094

岩石地球化学 上一篇    下一篇

金红石榴辉岩——一个可能的超球粒陨石Nb/Ta储库
梁金龙,施泽明*,徐进勇,高 英   
  1. 成都理工大学地球化学与核资源工程系, 四川 成都 610059
  • 收稿日期:2011-12-17 修回日期:2012-10-09 出版日期:2012-10-10
  • 通讯作者: 施泽明(1968-),男,江苏东台人,教授,主要从事环境、矿床地球化学研究. E-mail:shizm@cdut.edu.cn

Rutile-bearing Eclogite: One of the Possible Reservoirs Balancing the Nb-depleted Silicate Earth

Liang Jinlong,Shi Zeming, Xu Jinyong,Gao Ying   

  1. Department of Geochemistry, Chengdu University of Technology, Chengdu 610059, China
  • Received:2011-12-17 Revised:2012-10-09 Online:2012-10-10 Published:2012-10-10

Nb,Ta的硅酸盐地球质量不平衡问题争论由来已久,备受关注。近年来研究发现,含金红石的榴辉岩Nb/Ta往往高于球粒陨石值(Nb/Ta=17.5),暗示其可能是平衡地球Nb亏损的独立储库。而洋壳玄武岩部分熔融实验表明Ta 比Nb更倾向进入金红石晶格,这意味着作为俯冲洋壳部分熔融残留相的榴辉岩Nb/Ta不可能高于原岩。为了解释地质观察和实验结果之间的矛盾,系统分析了中国大陆科学钻探工程(CCSD)主孔、先导孔及附近地表榴辉岩的矿物微量元素。结果发现:榴辉岩中的Nb,Ta主要存在于金红石之中,其他矿物中含量极少;Nb,Ta之间存在着强烈分异(Nb/Ta =5.3~96.2), 并总体上具有超球粒陨石的特征;韭闪石和多硅白云母的Nb/Ta平均分别为48.6,21.8,显示了很强的Nb,Ta分异能力;其他矿物如石榴石、绿辉石、绿帘石、磷灰石等的Nb、Ta含量及Nb/Ta都很低,对Nb-Ta分异不造成影响。 认为导致Nb-Ta分异的不是金红石,而应出现在洋壳俯冲过程中金红石相出现之前的脱水和部分熔融阶段。富含Ti的角闪石(韭闪石)和白云母可能对NbTa分异起到了决定性的作用。等金红石相出现之后,由于其对Nb,Ta的绝对控制作用,此前阶段的分异结果便被固定在金红石中而继承下来。因此,含金红石的榴辉岩常常表现出超球粒陨石Nb/Ta的特征,与金红石不能有效地分异Na,Ta的实验结果之间并不矛盾。在不均匀的上地幔中含金红石的榴辉岩是可能的超球粒陨石Nb/Ta储库之一。

The mass imbalance of Nb-Ta in the silicate Earth is a significant geochemical issue which has long been concerned as a paradox. Weather is rutile-bearing eclogite the bridge of continental crust and the depleted mantle with regard to the Nb depletion,and how to explain the controversy between the oceanic basalt partial melting results (rutile favors Ta over Nb) and the naturally observed results (rutilebearing eclogites commonly have superchondritic Nb/Ta ratios)? The present work analyzed the trace elements of minerals in eclogites from the main hole of Chinese Continental Scientific Drilling Project (CCSD) and some outcrops nearby by LA-ICP-MS. The results showed that: (1) Rutile predominantly controls the distribution of Nb, Ta in eclogite, with extremely minor concentrations of the two elements in other minerals; (2) Significant fractionation between Nb and Ta presents in eclogites (Nb/Ta =5.3 ~96.2), with a overall superchondritic ratio (the mean Nb/Ta is 25.9); (3) The ratios of Nb/Ta in amphibole and phengite are unexpectedly high, 48.6 and 21.8 respectively, exhibiting stronger fractionation between Nb and Ta in the two minerals; (4) Both the concentrations of Nb, Ta and the ratios of Nb/Ta in the minerals such as garnet, omphacite, apatite, phengite, epidote, etc., in eclogite are extremely low. Based on these results, we argued it is likely that Ti-bearing minerals, such as pargasite and phengite fractionated Nb from Ta significantly before rutile occurring steadily, and the results of fractionation were fixed and inherited by rutile subsequently because of its absolutely control for Nb and Ta. Therefore, we propose that rutile-bearing eclogite be one of the reservoirs in deep mantle which can balance the depletion of Nb in the silicate Earth.

中图分类号: 

[1]Shannon R D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallo-graphica Section, 1976, A32:751-767.

[2]Jochum K P, McDonough W F, Palme H, et al. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths [J]. Nature, 1989, 340: 548.

[3]Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle [J]. Science, 2000, 287(5 451): 278-281.

[4]Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust [J]. Chemical Geology, 2000, 165(3/4): 197-213.

[5]Green T H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System [J]. Chemical Geology, 1995, 120(3/4): 347-359.

[6]Stolz A J, Jochum K P, Spettle B, et al. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts [J]. Geology, 1996, 24(7): 587-590.

[7]Munker C, Pfander J A, Weyer S, et al. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics [J]. Science, 2003, 301(5 629): 84-87.

[8]Xiao Y L, Sun W D, Hoefs J, et al. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile [J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4 770-4 782.

[9]Mcdonough W F, Sun S S. The Composition of the Earth [J]. Chemical Geology, 1995, 120(3/4): 223-253.

[10]Kamber B S, Collerson K D. Role of ‘hidden’ deeply subducted slabs in mantle depletion [J]. Chemical Geology, 2000, 166(3/4): 241-254.

[11]Munker C, Worner G, Yogodzinski G, et al. Behaviour of high field strength elements in subduction zones: Constraints from Kamchatka-Aleutian arc lavas [J]. Earth and Planetary Science Letters,2004, 224(3/4): 275-293.

[12]Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis [J]. Chemical Geology, 2005, 218(3/4): 339-359.

[13]Mcdonough W F. Partial melting of subducted oceanic-crust and isolation of its residual eclogitic lithology [J]. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 1991, 335: 407-418.

[14]Aulbach S, O’Reilly S Y, Griffin W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience,2008, 1(7): 468-472.

[15]Audetat A, Keppler H. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell[J]. Earth and Planetary Science Letters, 2005, 232(3/4): 393-402.

[16]Tropper P, Manning C E. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones [J]. American Mineralogist, 2005, 90(2/3): 502-505.

[17]Wade J, Wood B J. The Earth’s ‘missing’ niobium may be in the core [J]. Nature, 2001, 409(6 816): 75-78.

[18]Jochum K P, Hofmann A W, Stoll B, et al. Nb and V in planetary cores. [J]. Meteoritics & Planetary Science, 2002, 37(7): A72-A72.

[19]Kamber B S, Greig A, Schoenberg R, et al. A refined solution to Earth’s hidden niobium: Implications for evolution of continental crust and mode of core formation [J]. Precambrian Research, 2003, 126(3/4): 289-308.

[20]Liu Xiaoming, Gao Shan, Yuan Honglin, et al. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS[J]. Acta Petrologica Sinica, 2002, 18(3): 408-418.[柳小明,高山,袁洪林,等. 193nm LA-ICPMS 对国际地质标准参考物质中42种主量和微量元素的分析[J].岩石学报,2002,18(03):408-418.]

[21]Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite [J]. Nature,2003, 425(6 958): 605-609.

[22]Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones [J]. Nature, 2002, 417(6 891): 837-840.

[23]Green T H, Adam J. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650-700 degrees C [J]. European Journal of Mineralogy, 2003, 15(5): 815-830.

[24]Klemme S, Prowatke S, Hametner K, et al. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones [J]. Geochimica Et Cosmochimica Acta, 2005, 69(9): 2 361-2 371.

[25]Tiepolo M, Vannucci R, Oberti R, et al. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems [J]. Earth and Planetary Science Letters, 2000, 176(2): 185-201.

[26]Tribuzio R, Tiepolo M, Thirlwall M F. Origin of titanian pargasite in gabbroic rocks from the Northern Apennine ophiolites (Italy): Insights into the late-magmatic evolution of a MOR-type intrusive sequence [J]. Earth and Planetary Science Letters, 2000, 176(3/4): 281-293.

[27]Niida K, Green D H. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions [J]. Contributions to Mineralogy and Petrology, 1999, 135(1): 18-40.

[28]Castillo P R, Rigby S J, Solidum R U. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines [J]. Lithos, 2007, 97(3/4): 271-288.

[29]Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists [J]. Chemical Geology, 2002, 184(1/2): 97-122.

[1] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[2] 余金杰,王登红,王平安,徐珏,李晓峰,陈毓川,陈振宇. 俯冲—碰撞和高压、超高压变质带中的金红石研究进展[J]. 地球科学进展, 2006, 21(1): 47-52.
[3] 程昊;陈道公;周祖翼. 黄镇低温榴辉岩中石榴石成分分带的扩散动力学研究[J]. 地球科学进展, 2005, 20(4): 421-426.
[4] A.A.Marakushev, A.V.Bobrov, V.G.Butvina, 桑隆康,刘嵘. 南乌拉尔玛克苏托夫榴辉岩蓝片岩杂岩体的岩石学[J]. 地球科学进展, 2001, 16(2): 147-152.
[5] 简平,杨巍然. 造山带构造年代学基本问题——论同位素体系与变质作用的关系[J]. 地球科学进展, 1998, 13(5): 452-457.
[6] 张泽明; 游振东. 大别山榴辉岩带的研究进展及评述[J]. 地球科学进展, 1993, 8(4): 38-44.
阅读次数
全文


摘要