Please wait a minute...
img img
地球科学进展  2012, Vol. 27 Issue (8): 908-915    DOI: 10.11867/j.issn.1001-8166.2012.08.0908
研究论文     
科西河跨境流域水旱灾害与防治
胡桂胜1,2, 陈宁生1, Narendra Khanal3, 韩大为4
1.中国科学院山地灾害与地表过程重点实验室,中国科学院[]水利部 成都山地灾害与环境研究所,四川 成都 610041;
2.中国科学院大学,北京 100049;3.尼泊尔特里布文大学地理学院,加德满都,尼泊尔;4.英国布里斯托尔大学土木学院,英国
On the Water Hazards in the TransBoundary Kosi River Basin
Hu Guisheng1,2, Chen Ningsheng1, Narendra Khanal3, Han Dawei4
1.Key Laboratory of Mountain Hazards and Surface Processes, Chinese Academy of Sciences, Institute of
Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.Central Department of Geography, TU, Nepal; 4.Department of Civil Engineering, University of Bristol
 全文: PDF(1410 KB)  
摘要:

科西河流域是恒河的一个重要支流,地跨中国、尼泊尔和印度3个国家,流域面积7.15万km2,流域具有世界上最大的高差(从海拔8 848 m的珠穆朗玛峰到海拔60 m的恒河平原),最为完整的气候、土壤和植被带谱。流域发育有罕见的多类型水旱灾害,主要有冰湖溃决、洪水、干旱、水土流失等。通过实地调查这一代表性跨界流域的水文、气象、地质、地貌、土壤植被和区域社会经济等基本特征并结合已有的研究资料,揭示流域冰湖溃决、洪水、干旱等水旱灾害的特征和时空发育规律。流域冰湖溃决灾害集中于科西河流域上级支流,灾害损失巨大,并由于溃决洪水的侵蚀,沿途链状滑坡泥石流灾害发育;洪水灾害主要集中于流域下游,在相对较高标准的防洪体系中,洪水灾害是自然因素和人为因素相结合产生的,并造成流域水土流失严重;干旱灾害范围大,年内持续时间长,并且由于人口增加和生态退化进一步严重化。最后,依据流域水旱灾害特点,提出一系列减灾策略与措施。

关键词: 科西河跨界流域冰湖溃决洪水干旱    
Abstract:

The Kosi River is an important tributary of the Ganges that passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8 848 m of  Mount Jolmo Lungma(Mt.Everest) to 60 m of the Ganges plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacierlake outburst, debris flow, landslide, flood, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socioeconomics. Glacierlake outbursts are a huge threat to the local population in the region and   usually further trigger landslides and debris flows. Floods are usually a result of interaction between manmade hydraulic structures and the natural environment. Droughts tend to last over long periods and affect vast areas. Debris flows are widespread and occur in clusters. Rapid population increase, decline of ecosystems and climate changes have further exacerbated water related hazards in the region. Finally, the paper has proposed a set of mitigating strategies and measures.

Key words: Kosi River    Transboundary    Glacierlake outburst;    Flood;    Drought
收稿日期: 2011-11-14 出版日期: 2012-08-10
:  P33  
基金资助:

“十一五”国家科技支撑计划课题“跨界河流冰湖堰塞湖形成与溃决风险评估及预警关键技术研究”专题“代表性跨界河流流域冰湖堰塞湖溃决灾害风险分析”(编号:2008BAB42B06)资助.

作者简介: 胡桂胜(1984-),男,江西九江人,助理研究员,主要从事山地灾害与工程研究.E-mail:hgsjjx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡桂胜
陈宁生
Narendra Khanal
韩大为

引用本文:

胡桂胜, 陈宁生, Narendra Khanal, 韩大为. 科西河跨境流域水旱灾害与防治[J]. 地球科学进展, 2012, 27(8): 908-915.

Hu Guisheng, Chen Ningsheng, Narendra Khanal, Han Dawei. On the Water Hazards in the TransBoundary Kosi River Basin. Advances in Earth Science, 2012, 27(8): 908-915.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2012.08.0908        http://www.adearth.ac.cn/CN/Y2012/V27/I8/908

[1]Immerzeel W W,van Beek  L P H, Bierkens M F P. Climate change will affect the Asian water towers[J].Science, 2010, 328(5 984): 1 382-1 384.

[2]Kale V S.  Himalayan catastrophe that engulfed North Bihar[J]. Journal of the Geological Society of India, 2008,72(6): 713-719.

[3]Ajaya Dixit. Kosi Embankment Breach in Nepal:Need for a paradigm shift in responding to floods[J].Economic & Political Weekly February, 2009,44(6): 70-78.

[4]Mool P K. Glacier lake outburst floods in Nepal[J].Journal of Nepal Geological Society, 1995,10(Special issue):88.

[5]Yuan Yi. Advances in the assessment of natural disaster situation[J].Advnces in Earth Science, 2010,25(2): 22-32. [袁艺. 自然灾害灾情评估研究与实践进展[J]. 地球科学进展,2010,25(2): 22-32.]

[6]Che Tao, Jin Rui, Li Xin, et al. Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu Basin of Tibet during the last two decades[J].Journal of Glaciology and Geocryology, 2004,26(4):397-402. [车涛, 晋锐, 李新, 等. 近20 a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析[J]. 冰川冻土,2004,26(4): 397-402.]

[7]Chen Xiaoqing,Cui Peng, Yong Li, et al. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River Basin, Nyalam, Xizang (Tibet)[J].Geomorphology , 2007,88(314): 298-311.

[8]Church M.Baffin Island Sandurs—A Study of Arctic Fluvial processes[M].Ottawa:Geological Society of Canada Bulletin,1972.

[9]Clague J J, Mathews W H. The magnitude of jkulhlaups[J].Journal of Glaciology, 1973, 12(66): 501-504.

[10]Thorarinsson S. The ice-dammed lakes of Iceland with particular reference to their value as indicators of glacial oscillations[J].Geografiska Annaler,1939,21(3): 216-242.

[11]Haeberli W. Frequency and characteristics of glacier floods in the Swiss Alaps[J].Annals of Glaciology, 1983, 4: 85-90.

[12]Liu C H, Sharma C K. Report on First Expedition to Glaciers and Glacier Lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun kosi River Basins, Xizang (Tibet), China[M]. Beijing: Science Press, 1988:1 192.

[13]Liu Wei. Preliminary study on debris flow induced by glacier lake outburst in Tibet[J].Hydrogeology and Engineering Geology, 2006,(3): 88-92.[刘伟. 西藏典型冰湖溃决型泥石流的初步研究[J]. 水文地质与工程地质,2006,(3): 88-92.]

[14]Fan Jihui, Wu Caiyan, Cheng Genwei. Distribution characteristics and influencing factors of geological hazards in Tibet[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 806-812.

[15]Xu Daoming. Characteristics of debris flow caused by outburst of glacial lake in Boqu River, Xizang, China[J].GeoJournal, 1985,17(4): 569-580.

[16]Meon G,  Schwahz W. Estimation of glacier lake outburst flood and its impact on a hydro project in Nepal[J].Snow and Glacier Hydrology,1992, 218: 331-339.

[17]Bhalme H N, Mooley D A. Large-scale droughts/floods and monsoon circulation[J].American Meteorological Society, 1980,108(8): 1 197-1 211.

[18]Ramaswamy R I. Floods, Himalayan rivers, Nepal: Some heresies[J]. Economic & Political Weekly, 2008,43(46): 37-40.

[19]Rashmi Kiran Shrestha, Rhodante Ahlers, Marloes Bakker, et al. Institutional dysfunction and challenges in flood control: A case study of the Kosi flood 2008[J].Economic & Political Weekly, 2010,45(2): 45-53.

[20]Yamada T. Preliminary Work Report on Glacier Lake Outburst Flood in the Nepal Himalayas[R]. WECS Report,No.4/1/291191/1/1 Seq. No. 387.1991.

[21]Ran Dachuan, Luo Quanhua, Liu Bin, et al. Effect of soil-retaining dams on flood and sediment reduction in middle reaches of Yellow River[J].Journal of Hydraulic Engineering,2004,(5): 7-14.[冉大川,罗全华,刘斌,等. 黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报,2004,(5):7-14.]

[22]Sharma C K. Partial drought conditions in Nepal[J].Hydrological Sciences Bulletin des Sciences Hydrologiques,1979,24(3):327-334.

[23]Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought assessment and monitoring[J].Advances in Earth Science,2011,26(7): 763-778.[张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011,26(7): 763-778.]

[1] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[2] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[3] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[4] 吉琳, 庞奖励, 黄春长, 查小春, 周亚利, 刘涛, 王蕾彬. 汉江上游晏家棚段全新世古洪水研究*[J]. 地球科学进展, 2015, 30(4): 487-494.
[5] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[6] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[7] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[8] 张强, 韩兰英, 张立阳, 王劲松. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
[9] 王连喜,孔坚文,李琪,肖玮钰. 中国北方地区几种农业气象灾害指标研究综述[J]. 地球科学进展, 2013, 28(6): 627-636.
[10] 程国栋,赵传燕,许仲林,彭守璋. 生物地理模型研究进展及在干旱半干旱区的应用[J]. 地球科学进展, 2013, 28(1): 17-23.
[11] 王澄海,王芝兰,郭毅鹏. GEV干旱指数及其在气象干旱预测和监测中的应用和检验[J]. 地球科学进展, 2012, 27(9): 957-968.
[12] 王文,徐红. Palmer干旱指数在淮河流域的修正及应用[J]. 地球科学进展, 2012, 27(1): 60-67.
[13] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[14] 张强,张良,崔显成,曾剑. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
[15] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.