地球科学进展 ›› 1998, Vol. 13 ›› Issue (3): 265 -272. doi: 10.11867/j.issn.1001-8166.1998.03.0265

干旱气候变化与可持续发展 上一篇    下一篇

第四纪气候变化机制研究的进展与问题
熊尚发,丁仲礼,刘东生   
  1. 中国科学院地质研究所 北京 100029
  • 收稿日期:1997-06-02 修回日期:1997-10-28 出版日期:1998-06-01
  • 通讯作者: 熊尚发
  • 基金资助:

    国家自然科学基金重大项目“我国干旱半干旱区15万年来环境演变的动态过程与发展趋势”(项目编号:49291100)资助。

THE PROBLEMS AND PROGRESS IN THE STUDIES OF MECHANISMS FOR QUATERNARY CLIMATE CHANGES

Xiong Shangfa,Ding Zhongli,Liu Tungsheng   

  1. Institute of Geology, Chinese Academy of Sciences, Beijing 100029
  • Received:1997-06-02 Revised:1997-10-28 Online:1998-06-01 Published:1998-06-01

自从20世纪50年代海洋沉积氧同位素记录被揭示以来,经典的陆地4次冰期理论被新的认识所取代,人们发现第四纪以来冰期—间冰期旋回远远不止4次,并且从深海沉积和陆地黄土获取的古气候变化记录与地球轨道参数变化可以对比,为揭示第四纪古气候变化机制构建了明确的框架。近年来有关末次冰期不稳定气候事件的揭示也为深入认识古气候变化特征提供了新的证据。然而冰期—间冰期旋回机制、南北半球在冰期—间冰期循环过程中的耦合机制以及气候不稳定事件发生机制仍然是困扰古气候研究者的重大问题。

Since 1950's when Emiliani obtained the first curve of the oxygen isotope records in the deep ocean sediments, the classical glaciation hypothesis developed by Penck had been replaced by the new discoveries which, by the works of Emiliani and of Shakeleton, demonstrated that during Quaternary period the cycles of glacial-interglacial were much more than four times. The correspondence between the paleoclimate records from deep ocean sediments as well as continental loess and the earth orbital parameters have established a solid framework for the study of climate change mechanisms. In recent years, the new discoveries including climatic instability during last glacial period have provided an opportunity to study the characteristics and mechanisms of the millennial scale climate changes. However, paleoclimatologists are still puzzled by the climate change mechanisms concerning the devolopment of glacial-interglacial cycles, the symchronic climate changes between Northern and Southern Hemisphere, and the operation of the climate instability.

中图分类号: 

[1] Emiliani C. Pleistocene temperatures. J Geol, 1955, 63: 538~578.
[2] Broecker W S,Thurber D L,Goddard J,etc.Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 1968, 159:297~300.
[3] Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: pacemaker of the ice ages. Science, 1976, 194: 1 121~1 132.
[4] Imbrie J, Imbrie Z. Modling the climatic response to orbital variations. Science, 1980, 207: 943~953.
[5] Berger A, Pestiaux P. Accuracy and stability of the Quaternary terrestrial insolation. In:Berger A L, et al eds. Milankovitch and climate,Part I. Dordrecht: D.Reidel Pub Co, 1984. 83~111.
[6] Ruddiman W F, Kutzbach J E. Forcing of late Cenozoic Northern Hemisphere climate by plateau u plift in Southern Asia and the American West. J Geophys Res, 1989, 94(D15): 18 409~18 427.
[7] Raymo M E, Ruddiman W F, Backman J, etc. Late Pliocene variations in Northern Hemisphere ice sheet and North Atlantic deep water circulation. Paleoceanography, 1989, 4: 413~446.
[8] McIntyre A, Ruddiman W F, Karlin K, etc. Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography, 1989, 4: 19~55.
[9] Tiedemann R,Sarnthein M,Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of ODP site 659. Paleoceanography, 1994, 9: 619~638.
[10] de Menocal P B. Plio-Pleistocene African climate.Science,1995,270:53~59.
[11] Hooghiemstra H, Melice J L, Berger A, etc. Frequency spectra and paleoclimatic variability of the high-resolution 30~145 ka Funza I pollen record(eastern Cordillera,Colombia).Quat Sci Rev, 1993, 12: 141~156.
[12] Ding Z L, Yu Z, Rutter N W, etc. Towards an orbital time scale for Chinese loess deposits. Quat Sci Rev, 1994, 13:39~70.
[13] Broecker W S,Denton G H.The role of ocean-atmosphere reorganizations in glacial cycles.Geochimica et Cosmochimica Acta, 1989, 53: 2 465~2 501.
[14] Imbrie J, Berger A, Boyle E A, etc. On the structure and origin of major glaciation cycles II The 100 000 year cycle.Paleoceanography,1993,8:699~735.
[15] Olsen P O. A 40 million-year lake record of early Mesozoic orbital climatic forcing.Science, 1986, 234: 842~848.
[16] Short D A, Mengel J G, Crowley T J, etc. Filtering of Milankovitch cycles by Earth's geography. Quat Res, 1991,35: 157~173.
[17] Crowley T J,Kim K Y,Mengel J G,etc.Modelling 100 000-year climate fluctuations in pre-Pleist ocene time series. Science, 1992, 255: 705~707.
[18] Liu T, Ding Z. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic.Global and Planetary Change, 1993, 7: 119~130.
[19] Muller R A, MacDonald G J. Glacial cycles and orbital inclination. Nature, 1995, 377: 107~108.
[20] Farly K A, Patterson D B. A 100 kyr periodicity in the flux of extraterrest rial 3He to the sea floor. Nature, 1995,378: 600~603.
[21] Boyle E A, Keigwin L D. North Atlantic thermohaline circulation during the past 20 000 years linked to high-latitude surface temperature. Nature, 1987, 330: 35~40.
[22] Dansgaard W,White J W C,Johnsen S J.The abrupt termination of the Younger Dryas Climate event.Nature,1989, 339: 532~534.
[23] Broecker W S, Andree M, Wolfli W, etc. The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event. Paleoceanography, 1988, 3: 1~19.
[24] Lowell T V, Heusser C J, Andersen B G, etc. Interhemispheric correlation of late Pleistocene glacial events. Science,1995, 269: 1 541~1 549.
[25] Mayewski P A,Meeker L D,Whitlow S,etc.The atmosphere during the Younger Dryas.Science, 1993, 261: 195~197.
[26] Heinrich H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years.Quaternary Research, 1988, 29:142~152.
[27] Broecker W S, Bond G, McManus J, etc. Origin of the North Atlantic's Heinrich events. Climate Dynamics, 1992, 6:265~273.
[28] Bond G,Broecker W,Johnsen S,etc.Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 1993, 365: 143~147.
[29] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation.Nature, 1995, 375: 305~308.
[30] MacAyeal D R. Binge/Purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanogrphy, 1993, 8: 775~784.
[31] Bond G C,Lotti R.Iceberg dischargers into the North Atlantic on millennial time scales during the last glaciation.Science, 1995, 267: 1 005~1 010.
[32] Broecker W S. Massive iceberg discharges as triggers for global climate change. Nature, 1994, 372: 421~424.
[33] Denton G H,Hughes T J.Milankovitch theory of ice ages:Hypothesis of ice-sheet linkage between regional insolation and global climate. Quaternary Research, 1983, 20: 125~144.
[34] Broecker W S. Terminations. In: Berger A L, etc eds. Milankovitch and climate Part II. Dordrecht: D Reidel Pub Co, 1984. 687~698.
[35] Manabe S, Broccoli A J. The influence of continental ice sheets on the climate of an ice age. Journal of Geophysical Research, 1985, 90: 2 167~2 190.
[36] O'Brien S R,Mayewski P A,Meeker L D,etc.Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 1995, 270: 1 962~1 964.
[37] Kerr R A. Millennial climate oscillation spied.Science,1996,271:146~147.
[38] 丁仲礼, 任剑璋, 刘东生, 等. 晚更新世季风—沙漠系统千年尺度的不规则变化及其机制问题. 中国科学(D辑),1996, 26: 385~391.
[39] An Z, Porter S C. Millennial-scale climatic oscillations during the last interglaciation in central China. Geology,1997, 25: 603~606.
[40] Mann M E,Park J,Bradley R S.Global inter decadal and century-scale climate oscillations during the past five centuries. Nature, 1995, 378: 266~270.
[41] Crowley T J, Kim K Y. Towards development of a strategy for determining the origin of decadal-centennial scale climate variability. Quaternary Science Reviews, 1993, 12: 375~385.

[1] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[2] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[3] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[4] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[5] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[6] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[7] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[8] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[9] 刘伟男,王汝建,陈建芳,程振波,陈志华,孙烨忱. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展, 2012, 27(2): 209-216.
[10] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[11] 姚玉鹏,刘羽. 第四纪作为地质年代和地层单位的国际争议与最终确立[J]. 地球科学进展, 2010, 25(7): 775-781.
[12] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[13] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[14] 张家武,何晶,陈硕,李双. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题[J]. 地球科学进展, 2009, 24(11): 1229-1237.
[15] 秦养民,谢树成,顾延生,王军霞,周修高. 第四纪环境重建的良好代用指标——有壳变形虫记录与古生态学研究进展[J]. 地球科学进展, 2008, 23(8): 803-812.
阅读次数
全文


摘要