地球科学进展 ›› 2012, Vol. 27 ›› Issue (4): 379 -385. doi: 10.11867/j.issn.1001-8166.2012.04.0379

综述与评述 上一篇    下一篇

硫化物Rb-Sr同位素定年研究进展
杨红梅,蔡红,段瑞春,刘重芃,张利国,梅玉萍,段桂玲   
  1. 武汉地质矿产研究所同位素地球化学研究室,湖北武汉430223
  • 收稿日期:2011-08-12 修回日期:2012-02-15 出版日期:2012-04-10
  • 通讯作者: 杨红梅(1976-),女,湖北房县人,副研究员,主要从事同位素地球化学研究. E-mail:ycyanghmei@163.com
  • 基金资助:

    国土资源部公益性行业科研专项“湘西—鄂西典型铅锌矿床同位素定年方法与应用示范研究”(编号:201011027-3);中国地质调查局科技项目“同位素年代学方法技术研究(宜昌所)”(编号:12010761404)资助.

Progress in Rb-Sr Isotopic Dating of Sulfide

Yang Hongmei,Cai Hong,Duan Ruichun,Liu Chongpeng,Zhang Liguo,Mei Yuping,Duan Guiling   

  1. Isotope Geochemistry Laboratory, Wuhan Institute of Geology and Mineral Resources, Wuhan430223, China
  • Received:2011-08-12 Revised:2012-02-15 Online:2012-04-10 Published:2012-04-10

针对金属矿床成矿年代确定混乱的问题,国内外许多矿床学家和同位素地球化学家对金属矿物常规同位素定年方法进行了有益的探索研究,尤其是对于矿石矿物以闪锌矿、方铅矿和黄铁矿为主的铅锌矿床,硫化物矿物Rb-Sr同位素定年方法显示出了其独特的优势。结合近几年开展的工作,总结国内外硫化物Rb-Sr同位素定年研究取得的成果、闪锌矿中Rb、Sr的赋存状态与定年机理以及定年适应性问题。采用闪锌矿Rb-Sr同位素组成数据拟合成等时线源自热液流体与闪锌矿之间Rb和Sr的不同分异作用,但并不是所有的闪锌矿均适合该定年技术。要成功获得年龄,需结合野外地质特征采集代表性的矿石样品,并在镜下鉴定基础上挑选合适的单矿物;在分析测试过程中,需尽可能去除次生包裹体和粘土矿物。

In view of  the confusion in dating the metallic ore deposit, many mineralogists and isotopic geochemists have carried through much useful research in the conventional isotopic dating of metal mineral, and sulfide Rb-Sr isotopic dating method displays unique predominance, especially to the Pb-Zn ore deposit whose ore minerals mainly comprise sphalerite, galena and pyrite. Combining with the dating technique research made in our laboratory in recent years, the authors have  sums up the achievements of sulfide Rb-Sr isotopic dating, Rb and Sr residence sites in sphalerite, dating mechanism, and its adaptability. The sphalerite Rb-Sr isochron arrays derive from differential partitioning of Rb and Sr between hydrothermal fluid and sphalerite, but not all sphalerites  adapt to this dating technique. To succeed in obtaining ore-forming age, it is necessary to sample the representative ores combining with the geological characteristics, and to pick out the appropriate minerals based  on the thorough study of the petrography and paragenesis of samples. Furthermore, the secondary fluid inclusions and clay minerals should be wiped off during the sample analysis.

中图分类号: 

[1]Zhao Kuidong, Jiang Shaoyong. Direct isotope dating for metallic ore deposits[J]. Earth Science Frontiers, 2004, 11(2): 425-434.[赵葵东, 蒋少涌. 金属矿床的同位素直接定年方法[J]. 地学前缘, 2004, 11(2): 425-434.]
[2]Li Wenbo, Huang Zhilong, Xu Deru, et al. Rb-Sr isotopic method on Zinc-Lead ore deposit: A review[J]. Geotectonica et Metallogenia, 2002,26(4): 436-441.[李文博, 黄智龙, 许德如, 等. 铅锌矿床Rb-Sr定年研究综述[J]. 大地构造与成矿学, 2002,26(4):436-441.]
[3]Reesman R H. The Rb-Sr analysis of some sulfide mineralization[J]. Earth and Planetary Science Letters, 1968, 5: 23-26.
[4]Maxwell R. A Study of Rubidium, Strontium and Strontium Isotopes in Some Mafic and Sulfide Minerals[D/OL]. England: University of British Columbia, 1976,https://circle.ubc.ca/handle/2429/20410,2011.
[5]Medford G A, Maxwell R J, Richard L A. 87Sr/86Sr ratio measurements on sulfides, carbonates and fluid inclusions from Pine Point, Northwest Territories, Canada: An 87Sr/86Sr ratio increase accompanying the mineralizing process[J]. Economic Geology 1983, 78(7): 1 375-1 378.
[6]Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr dating of sphalerites from Tennessee and the genesisi of Mississippi Valley type ore deposits[J]. Nature, 1990, 346(6 369): 354-357.
[7]Brannon J C, Podosek F A, McLimans R K. Alleghenian age of the Upper Mississippi Valley zinc-lead deposit determined by Rb-Sr dating of sphalerite[J]. Nature, 1992, 356(6 369): 509-511.
[8]Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr dating of sphalerites from Mississippi Valley-Type(MVT) ore deposits[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 417-427.
[9]Christensen J N, Halliday A N, Leigh K E, et al. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5 191-5 197.
[10]Christensen J N, Halliday A N. Testing Models of large-scale crustal fluid using direct dating of sulfides: Rb-Sr evidence for early dewatering and formation of Mississippi Valley-type deposits, Canning Basin, Australia[J]. Economic Geology, 1995, 90(4): 877-884.
[11]Yang Jinhui, Zhou Xinhua. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance[J]. Chinese Science Bulletin, 2000, 45(24): 2 272-2 277.[杨进辉, 周新华. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代[J]. 科学通报, 2000, 45(14): 1 547-1 552.]
[12]Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits[J]. Geological Society of America, 2001, 29(8): 711-714.
[13]Zhang Ruibin, Liu Jianming, Ye Jie, et al. Chalcopyrite Rb-Sr isochron age dating and its ore-forming significance in Shouwangfen copper deposit, Hebei province[J]. Acta Petrologica Sinica, 2008, 24(6): 1 353-1 358. [张瑞斌, 刘建明, 叶杰, 等. 河北寿王坟铜矿黄铜矿铷锶同位素年龄测定及其成矿意义[J]. 岩石学报, 2008, 24(6): 1 353-1 358.]
[14]Wan B, Hegner E, Zhang L C, et al. Rb-Sr geochronology of chalcopyrite from the Chehugou porphyry Mo-Cu deposit(Northeast China) and geochemical constraints on the origin of hosting granites[J]. Economic Geology, 2009, 104(3): 351-363.
[15]Hou Minglan, Jiang Shaoyong, Jiang Yaohui, et al. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shandong province[J]. Acta Petrologica Sinica, 2006, 22(10): 2 525-2 533.[侯明兰, 蒋少涌, 姜耀辉, 等. 胶东蓬莱金矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J]. 岩石学报, 2006, 22(10): 2 525-2 533.]
[16]Yao Junming, Hua Renmin, Lin Jinfu. REE, Pb-S isotope geochemistry, and Rb-Sr isochron age of pyrites in the Baoshan deposit, South Hunan province, China[J]. Acta Geologica Sinica, 2006, 80(7): 1 045-1 054.[姚军明, 华仁民, 林锦富. 湘南宝山矿床REE、Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年[J]. 地质学报, 2006, 80(7): 1 045-1 054.]
[17]Wei J H, Liu C Q, Tang H F. Rb-Sr and U-Pb isotopic systematics of pyrite and granite in Liaodong gold province, North China: Implication for the age and genesis of a gold deposit[J]. Geochemical Journal, 2003, 37(5): 567-577.
[18]Han Yigui, Li Xianghui, Zhang Shihong, et al. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan, Central China[J]. Chinese Science Bulletin, 2007, 52(13): 1 820-1 826.[韩以贵, 李向辉, 张世红, 等. 豫西祁雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年[J]. 科学通报, 2007, 52(11): 1 307-1 311.]
[19]Yu Gang. The Chronology and Isotopic Geochemistry of Qingchengzi Ore Field, Eastern Liaoning[D]. Hefei: University of Science and Technology of China, 2005. [喻钢. 辽东青城子矿田的年代学和同位素地球化学[D]. 合肥: 中国科学技术大学, 2005.]
[20]Yin M D, Li W B, Sun X W. Rb-Sr isotopic dating of sphalerite from the giant Huize Zn-Pb ore field, Yunnan province, southwestern China[J]. Chinese Journal of Geochemistry, 2009, 28(1): 70-75.
[21]Tretbar D R, Arehart G B, Christensen J N. Dating gold deposition in a Carlin-type gold deposit using Rb/Sr methods on the mineral galkhaite[J]. Geology, 2000, 28(10): 947-950.
[22]Pettke T, Diamond L W. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrones: A calarification of why it works[J]. Economic Geology, 1996, 91: 951-956.
[23]Walshaw R D, Menuge J F. Dating of crustal fluid flow by the Rb-Sr isotopic analysis of sphalerite: A review[J]. Geological Society, London, Special Publications, 1998, 144: 137-143.

[1] 赵奇,闫义. 伊利石 K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.
[2] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[3] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[4] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[5] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[6] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[7] 邵珂, 陈建平, 任梦依. 西南印度洋中脊多金属硫化物矿产资源评价方法与指标体系[J]. 地球科学进展, 2015, 30(7): 812-822.
[8] 辛补社,杨华,王多云,付金华,姚泾利,罗安湘,张瑜. 甘肃靖远王家山地区凝灰岩锆石U-Pb年龄及地层对比意义[J]. 地球科学进展, 2013, 28(9): 1043-1048.
[9] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[10] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[11] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[12] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[13] 牛向龙,李江海,冯军. 五台山新太古代块状硫化物矿床成矿作用研究——海底喷流沉积成因显微构造证据[J]. 地球科学进展, 2009, 24(9): 1009-1014.
[14] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[15] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
阅读次数
全文


摘要