地球科学进展 ›› 2011, Vol. 26 ›› Issue (11): 1225 -1233. doi: 10.11867/j.issn.1001-8166.2011.11.1225

全球变化研究 上一篇    

全球碳循环研究中的δ 13C方法及其进展
陈中笑,赵琦   
  1. 南京信息工程大学省部共建气象灾害重点实验室,江苏南京210044
  • 收稿日期:2011-06-20 修回日期:2011-09-26 出版日期:2011-11-10
  • 通讯作者: 陈中笑(1967-),男,副教授,江苏靖江人,主要从事全球生物地球化学循环研究. E-mail:czxchen@nuist.edu.cn
  • 基金资助:

    中国气象局气候变化专项“UD模式在全球碳循环研究中的应用”(编号:CCSF2007-44);江苏高校优势学科建设工程资助项目资助.

δ 13C Methods and Its Progress in the Study of Global Carbon Cycle

Chen Zhongxiao, Zhao Qi   

  1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology,Nanjing210044, China
  • Received:2011-06-20 Revised:2011-09-26 Online:2011-11-10 Published:2011-11-10

随着分析技术的进步,δ13C观测在全球碳循环研究中越来越受到重视。在讨论关于碳循环中δ13C的Suess效应、分布特征和同位素分馏等基本概念的基础上,结合现有的观测事实,介绍应用δ13C辨别碳的源汇问题的方法,通过比较不同Keeling Plot方法分析该方法在研究大气CO2背景特征中的意义。着重讨论δ13C在研究大气CO2变化中的作用,以及在全球碳循环评估,尤其是利用观测的海水溶解无机碳的δ13C估算海洋吸收率研究中不同方法的特点及存在的问题,展望δ13C研究的发展趋势。

With the development of analytical technique, δ13C observations have been paid more attentions in the study of global carbon cycle. Based on the discussion  the fundamental concepts of δ13C in the global carbon cycle, such as δ13C Suess Effect, observed δ13C ranges of various carbon reservoirs and fractionation between them, this article introduces the analytical methods in applying δ13C to distinguish carbon source and sink by combining with current observational facts. The roles of δ13C in the study of seasonal and interannual variations of atmospheric CO2 are discussed based on the facts that the δ13C from ocean is similar to that of atmosphere but that from terrestrial biosphere is much smaller than that of atmosphere. The various Keeling Plot approaches are introduced to show the achievements in analyzing the background characteristics  of atmospheric CO2 and its applicability is also discussed. The mass balance methods using observed atmospheric δ13C are analyzed to represent how to only use atmospheric δ13C data studying the missing carbon problems. The various δ13C inventory techniques in the assessment of global carbon cycle, particularly oceanic uptake rate, are analyzed to point out their features and shortages, and these techniques offer no model approaches to investigate the global carbon cycle. We  stress  that the uncertainties between inventory approaches are mainly from the observational errors, not from the techniques. Finally, the prospects of δ13C research in the global carbon cycle for both observational and theoretical fields are also discussed, especially the model based simulations. 

中图分类号: 

[1]IPCC. Climate Change 2007: The Physical Science Basis [M]Solomon S, Qin D, Manning M, eds.New York: Cambridge University Press, 2007.
[2]IPCC. Climate Change 2001: The Scientific Basis [M]Houghton J T, Ding Y, Griggs D J, eds.New York: Cambridge University Press, 2001.
[3]Tans P P, Berry J A, Keeling R F. Oceanic 13C/12C observations: A new window on ocean CO2 uptake [J]. Global Biogeochemical Cycles,1993, 7: 353-368.
[4]Holden N E. Table of the isotopes [C]Lide D R, et al,eds. Handbook of Chemistry and Physics(85th ed).Florida: United States: CRC Press, 2002.
[5]Chen Zhongxiao, Jiang Aijun, Ren Huijun, et al. Arguments on oceanic carbon cycle of IPCC assessments—A test using δ13C budgets [J].Advances in Climate Change Research, 2009, 5(Suppl.):19-24.
[6]Keeling C D, Bacastow R B, Carter A F, et al. A three-dimensonal model of atmospheric CO2 transport based on observed wind, 1, Analysis of observational data [C]Peterson D, et al,eds. Aspects of Climate Variability in the Pacific and Western Americas. Washington DC: Geophysical Monograph, AGU, 1989, 55: 165-236.
[7]Quay P, Sonnerup R, Westby T, et al. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake [J]. Global Biogeochemical Cycles, 2003, 17: 1 004.
[8]Keeling R F, Piper S C, Bollenbacher A F, et al. Atmospheric CO2 records from sites in the SIO air sampling network[DB/OL]. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, 2009[2011-05-10]. http:cdiac.ornl.gov/trends/co2/sio-keel.html, 2011.
[9]Keeling R F,Piper S C, Bollenbacher A F, et al. Monthly atmospheric 13C/12C isotopic ratios for 11 SIO stations[DB/OL]. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, 2010[2011-05-10]. http:cdiac.ornl.gov/trends/co2/iso-sio/iso-sio.html, 2011.
[10]Etheddge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn [J].Journal of Geophysical Research, 1996, 101: 4 115-4 128.
[11]Nozaki Y, Rye D M, Turekian K K, et al. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral [J].Geophysical Research Letters, 1978, 5: 825-828.
[12]Druffel E R M, Benavides L M. Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge [J].Nature, 1986, 321: 58-61.
[13]Mackenzie F, Lerman A. Carbon in the Geobiosphere—Earth′s Outer Shell [M].Dordrecht:Springer,2006.
[14]Mook W G, Bommerson J C, Staverman W H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide [J].Earth and Planetary Science Letters,1974, 22:169-176.
[15]Woodwell G M, Whittaker R H,Reiners W A,et al. The biota and the world carbon budget [J].Science, 1978, 199: 141-146.
[16]Keeling R F, Shertz S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle[J].Nature, 1992, 358: 723-727.
[17]Zhou Lingxi,Li Jinlong, Wen Yupu, et al. Background variations of atmospheric carbon dioxide and its stable carbon isotopes at Mt. Waliguan[J].Acta Scientiae Circumstantiae, 2003,23(5): 295-300.[周凌晞,李金龙,温玉璞,等.瓦里关山大气CO2及其δ13C本底变化[J].环境科学学报,2003,23(5):295-300.]
[18]Zhou L, Conway T J, White J W C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991-2002[J].Global Biogeochemical Cycles, 2005, 19: GB3021.
[19]Sarmiento M,Gruber G, Beaulieu C, et al. Trends and regional distributions of land and ocean carbon sinks[J].Biogeosciences, 2010, 7:2 351-2 367.
[20]Chen Zhongxiao, Cheng Jun. ENSO, volcanic activities and the interannual variations of atmospheric CO2[J]. Advances in Climate Change Research, 2011, 7 (3): 171-177.[陈中笑,程军. ENSO,火山活动与大气CO2的年际变化[J].气候变化研究进展,2011, 7 (3): 171-177.]
[21]Le Quéré C, Raupach M, Canadell J, et al. Trends in the sources and sinks of carbon dioxide [J].Nature Geoscience, 2009, 2:831-836.
[22]Francey R J, Tans P P, AllIson C E, et al. Changes in oceanic and terrestrial carbon uptake since 1982 [J].Nature, 1995, 373: 326-330.
[23]Keeling C D. Variations in concentration and isotopic abundances of atmospheric carbon dioxide[C]Craig H, et al,eds. Proceedings of the Conference on Recent research in Climatology. Committee on Research in Water Resources and University of California, Scripps Institution of Oceanography, La Jolla, California, 1957:43-49.
[24]Keeling C D. The concentration and isotopic abundances of carbon dioxide in rural areas [J].Geochimica et Cosmochimica Acta,1958, 13: 322-334.
[25]Keeling C D, Mook W G, Tans P P. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide [J].Nature, 1979, 277:121-123.
[26]Inoue H, Sugimura Y. The carbon isotopic ratio of atmospheric carbon dioxide at Tsukuba, Japan [J].Journal of Atmospheric Chemistry,1985, 2:331-344.
[27]Zhou L, White J W C, Conway T J, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Seasonally averaged 1991-2002 source/sink signals, and a comparison of 1998-2002 record to the 11 selected sites in the Northern Hemisphere [J]. Global Biogeochemical Cycle,2006, 20: GB2001.
[28]Miller J B, Tans P P. Calculating isotopic fractionation from atmospheric measurements at various scales [J].Tellus Series B,2003, 55:207-214.
[29]Pataki D E, Ehleringer J R, Flanagan L B , et al. The application and interpretation of Keeling Plots in terrestrial carbon cycle research[J].Global Biogeochemical Cycles,2003, 17(1):1 022.
[30]Battle M,Bender M L, Tans P P,et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C [J].Science, 2000, 287: 2 467-2 470.
[31]Townsend A R, Asner G P, White J W C, et al. Land use effects on atmospheric 13C imply a sizable terrestrial CO2 sink in tropical latitudes [J].Geophysical Research Letters,2002, 29: 1 426.
[32]Ciais P, Tans P P, White J W C, et al. Partitioning of ocean and land uptake of CO2 as inferred by measurement from the NOAA climate monitoring and diagnostics laboratory global air sampling network [J].Journal of Geophysical Research,1995, 100: 5 051-5 070.
[33]Ciais P, Tans P P, Trolier M, et al. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2[J].Science,1995, 269: 1 098-1 102.
[34]Quay P D, Tilbrook B, Wong C S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence [J].Science, 1992, 256: 74-79.
[35]Broecker W S, Peng T H. Evaluation of the 13C constraint on the uptake of fossil fuel CO2 by the ocean [J].Global Biogeochemical Cycles,1993, 7: 619-626.
[36]Heimann M, Maier-Reimer E. On the relations between the oceanic uptake of CO2 and its carbon isotopes [J].Global Biogeochemical Cycles,1996, 10: 89-110.
[37]Bacastow R B, Keeling C D, Lueker T J, et al. The 13C suess effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda [J].Global Biogeochemical Cycles, 1996, 10: 335-346.
[38]Quay P D, Stutsman J, Feely R A, et al. Net community production rates across the subtropical and equatorial Pacific Ocean estimated from air-sea δ13C disequilibrium[J].Global Biogeochemical Cycles, 2009, 23: GB2006.
[39]Matsumoto K, Sarmiento J L, Key R M, et al. Evaluation of ocean carbon cycle models with data-based metrics[J].Geophysical Research Letters, 2004, 31: L07303.
[40]Jain A K, Kheshgi H S, Hoffert M I, et al. Distribution of radiocarbon as a test of global carbon cycle models[J].Global Biogeochemical Cycles,1995,9: 153-166.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
[3] 杨黎芳,李贵桐,李保国. 土壤发生性碳酸盐碳稳定性同位素模型及其应用[J]. 地球科学进展, 2006, 21(9): 973-981.
[4] 徐永福;浦一芬;赵亮. 海洋碳循环模式的研究进展[J]. 地球科学进展, 2005, 20(10): 1106-1115.
[5] 陈骏,杨杰东,李春雷. 大陆风化与全球气候变化[J]. 地球科学进展, 2001, 16(3): 399-405.
[6] 刘 强,刘嘉麒,贺怀宇. 温室气体浓度变化及其源与汇研究进展[J]. 地球科学进展, 2000, 15(4): 453-460.
[7] 王庚辰. 大气中CO 2浓度的全球监测现状[J]. 地球科学进展, 1994, 9(4): 70-77.
阅读次数
全文


摘要