地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 699 -704. doi: 10.11867/j.issn.1001-8166.2002.05.0699

综述与评述 上一篇    下一篇

微生物参与下的水/粒界面吸附反应研究进展
万鹰昕 1,2,刘丛强 1, 傅平青 1,2, 刘建军 1,2   
  1. 1.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002;2.中国科学院研究生院,北京 100039
  • 收稿日期:2001-01-17 修回日期:2002-03-31 出版日期:2002-12-20
  • 通讯作者: 鹰昕(1976-),女,江西省黎川县人,博士研究生,主要从事水环境地球化学和生物作用下的环境化学研究.E-mail: yingxinwan@21cn.com E-mail:yingxinwan@21cn.com
  • 基金资助:

    中国科学院知识创新工程重要方向项目“喀斯特地区(贵州乌江流域)物质的水文地球化学循环及其环境效应研究”(编号:KZCX2-105)资助.

A REVIEW ON RESEARCHES OF PARTICLE/WATER INTERACTION IN PRESENCE OF MICROORGANISM

WAN Ying-xin 1,2, LIU Cong-qiang 1, FU Ping-qing 1,2, LIU Jian-jun 1,2   

  1. 1.The State Key Laboratory of Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002,China;2.Graduate School of Chinese Academy Science, Beijing 100039,China
  • Received:2001-01-17 Revised:2002-03-31 Online:2002-12-20 Published:2002-10-01

回顾了近年来微生物存在下的水/粒界面吸附反应研究进展,包括微生物对金属阳离子的吸附、矿物微粒对微生物的吸附和微生物参与下的水/粒界面吸附;目前,这些吸附反应的定量化模型研究主要有体积分配关系和表面络合模型两种方法。其中,体积分配关系可从野外直接测得;而表面络合模型是采用不受溶液条件变化影响的准热力学常数来描述表面化学反应,能外推至实验室无法直接模拟的条件。随着人们对微生物在环境中重要性认识的加深,微生物参与下的水/粒界面吸附和可预测吸附程度的定量化模型受到人们越来越多的重视。

This review addresses adsorption at particle/water interface in the presence of microorganism, which are microorganism/metal ions adsorption, mineral particle/microorganism adsorption and particle/water adsorption in presence of microorganism. Mostly, there are bulk partition relationships and site specific (surface complexation) models which quantify these adsorption reactions. Among them, bulk partition approaches can be measured directly from the field, but only the site specific models can be extrapolated to conditions not directly studied in the laboratory,because they treat the adsorbed solute as another species whose thermodynamic stability can be quantified with an equilibrium constant. People pay more and more attention to particle/water interaction in presence of microorganism and model which can account for and predict adsorption have been stressed, when the importance of microorganism is known more.

中图分类号: 

[1]Hart B T. Uptake of trace metals by sediments and suspended particulates: a review[J]. HydrobioLogia, 1982, 91:299-313.
[2]Nathan Y, Jeremy B F, Christopher J D. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria-mineral adsorption[J]. Geochimica et Cosmochimica Acta, 2000, 64:609-617.
[3]Fein J B, Daughney C J, Yee N,et al.A chemical equilibrium model for metal adsorption onto bacterial surfaces[J]. Geochimica et Cosmochimica Acta, 1997, 61:3 319-3 328.
[4]Fowle D A,Fein J B. Competitive adsorption of metal cations onto two gram positive bacteris: Testing the chemical equilibrium model[J]. Geochimica et Cosmochimica Acta, 1999, 63:3 059-3 067.
[5]Mullen M D, Wolf D C, Ferris F G,et al.Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology, 1989, 55:3 143-3 149.
[6]Harden B P,Harris J O. The isoelectric point of bacterial cells[J]. Journal of Bacterial, 1953, 65:198-202.
[7]Beveridge T J,Koval S F. Binding of metals to cell envelopes ofEscherichia coliK-12[J]. Applied and Environmental Microbiology, 1981, 42:325-335.
[8]Collins Y E,Stotzky G. Heavy metals alter the electrokinetic properties of bacteria,yeasts, and clay minerals[J]. Applied and Environmental Microbiology, 1992, 58:592-1 600.
[9]Baveridge T J, Doyle R J. Metals Ions and Bacterial[M]. New York: John Wiley & Sons Inc, 1989.1-29.
[10]Beveridge T J. The response of cell walls ofBacillus subtilisto metals and to electron-microscopic stains[J]. Canadian Journal of Microbiology, 1978, 24:89-104.
[11]Beveridge T J,Murray R G E. Uptake and retention of metals by cell walls ofBacillus subtilis[J]. Journal of Bacteriology, 1976, 127:1 502-1 518.
[12]Herald P J,Zottola E A. Effect of various agents upon the attachment of Pseudomonas fragi to stainless steel[J]. Journal of Food Science, 1989, 54:461-464.
[13]Mclean R J C, Beauchemin D, Beveridge T J. Influence of oxidation state on iron binding byBacillus licheniformis capsule[J]. Applied and Environmental Microbiology, 1992, 58:405-408.
[14]Mayers I T,Beveridge T J. The sorption of metals toBacillus subtiliswalls from dilute solutions and simulated Hamilton harbor (Lake Ontario) water[J]. Canadian Journal of Microbiology, 1989, 35:764-770.
[15]Plette A C C, Benedetti M F,  Van Riemsdijk W H. Competitive binding of prontons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium[J]. Environmental Science & Technology, 1996,30:1 902-1 910.
[16]Koopal L K, Van Riemsdijk W H, De Wit C M,et al.Analytical isotherm equations for multicomponent adsorption to heterogenous surfaces[J]. Journal of Colloid Interface Science, 1994, 166: 51-60.
[17]Benedetti M F, Miline C J, Kinniburgh D G,et al.Metal ion binding to humic substances: Application of the non-ideal competitive adsorpion model[J]. Environmental Science & Technology, 1995, 29:446-457.
[18]Daughney C J, Fein J B,  Yee N. A comparison of the thermodynamics of metal adsorption onto two common bacteria[J]. Chemical Geology, 1998, 144:4161-176.
[19]Westall J C. FITEQL, a Computer Program for Determination for Chemical Equilibrium Constans from Experimental Data[R]. Version 2.0 Report 82-02  Depatment Chemical, Oregon: St University, Corvalli OR, USA 1982.
[20]Walker S G, Flemming C A, Ferris G G,et al.Physicochemical interaction ofEscherichia colicell envelopes andBacillus subtiliscell walls with two clays and ability of the composite to immobilize heavy metals from solution[J]. Applied and Environmental Microbiology, 1989, 55:2 976-2 984.
[21]van Loosdrecht M C C, Lyklema J, Norde W,et al. Bacterial adhesion: A physicochemical approach[J]. Microbial Ecology, 1989, 17:1-15.
[22]Scholl M A, Mills A L, Herman J S,et al.The Influence of Mineralogy and Solution chemistry in the attachment of bacteria to representative aquifer materials[J]. Journal of Contamicant Hydrology, 1990, 6:321-336.
[23]Scholl M A,Harvey R W. Laboratory investigation on the role of sediment surface and groundwater chemistry in the transport of bacteria through a contaminated sandy aquifer[J]. Environmental Science & Technology, 1992, 26:1 410-1 417.
[24]Mills A L,Dejesus T H. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied Environmental Microbiology, 1994, 60:3 300-3 306.
[25]Aaron L M, Herman J S, George M H,et al.Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied and Environmental Microbiology, 1994, 60:3 300-3 306.
[26]Ohmura N, Kitamura K,  Saiki H. Selective adhesion of Thiobacillus Ferrooxidans to pyrite[J]. Applied and Environmental. Microbiology, 1993, 59:4 044-4 050.
[27]Devasia P, Natarajan K A, Sathyannarayana D N,et al.Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces[J]. Applied and Environmental Microbiology, 1993, 59:4 051-4 055.
[28]Gratham M C,Dove P M. Investigation of bacterial mineral interactions using Fluid Tapping Mode Atomic Force Microscopy[J]. Geochimica et Cosmochimica Acta, 1996, 60:2 473-2 480.
[29]Grantham M C, Dove P M, Dichristina T J. Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings[J]. Geochimica et Cosmochimica Acta, 1997, 61:4 467-4 477.
[30]Elimelech M, O'Melia C R. Kinetics of deposition of colloidal particles in porous media[J]. American Chemical Society, 1990, 24:1 528-1 536.
[31]Gannon J T, Manilal V B, Alexander M. Relationship between cell surface properties and transport of bacteria through soil[J]. Applied Environmental Microbiology, 1991, 57:190-193.
[32]Reddy R G, Wang S,  Torma A E. A preliminary thermodynamic study of bacterial attachment on uranium contaminated soils from Fermald[A]. Torma A E,  Wey J E, Lakshmanan V L. Biohydrometallurgical Technologies[C]. The Mineral Metal and Material Society, 1993.715-729.
[33]Flemming C A, Ferris F G, Beveridge T J,et al.Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites[J]. Applied and Environmental Microbiology, 1990, 56:3 191-3 203.
[34]Urrutia M M,Beveridge T J. Remobilization of heavy metals retained as oxhydroxides or silicates byBacillus subtiliscells[J]. Applied and Environmental Microbiology, 1993, 59:4 323-4 329.
[35]Small T D, Warren L A, Ferris F G. Influence of ionic strength on strontium sorption to bacteria, Fe(Ⅲ) oxide, and composite bacteria-Fe(Ⅲ) oxide surface[J]. Applied Geochimistry, 2001, 16:939-946.

[1] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[2] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[3] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
[4] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[5] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[6] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[7] 范婷婷, 王玉军,李成保,周东美. 基于悬液Wien效应研究离子与土壤黏粒之间[J]. 地球科学进展, 2015, 30(12): 1295-.
[8] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[9] 李 东, 李 祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2): 243-252.
[10] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[11] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[12] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[13] 姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010, 25(5): 474-483.
[14] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[15] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
阅读次数
全文


摘要