地球科学进展 ›› 2004, Vol. 19 ›› Issue (1): 26 -031. doi: 10.11867/j.issn.1001-8166.2004.01.0026

研究论文 上一篇    下一篇

海洋胶体与痕量金属的相互作用
魏俊峰;戴民汉;洪华生;李骁麟;陈蔚芳   
  1. 厦门大学海洋环境科学教育部重点实验室,厦门大学环境科学研究中心,福建 厦门 361005
  • 出版日期:2004-01-20
  • 通讯作者: 魏俊峰(1965-),男,浙江丽水人,高级工程师,主要从事海洋环境科学研究. E-mail:E-mail:junfengw@163.com
  • 基金资助:

    国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078500);国家杰出青年科学基金项目“珠江三角洲及其邻近的南海海域中碳及微生物地球化学循环定量研究——胶体在该循环中的显著作用”(编号:49825111)资助.

INTERACTIONS BETWEEN COLLOIDS AND TRACE METALS IN MARINE ENVIRONMENTS

WEI Junfeng, DAI Minhan, HONG Huasheng, LI Xiaolin, CHEN Weifang   

  1. Marine Environmental Laboratory, Environmental Science Research Center, Xiamen University, Xiamen 361005,China
  • Online:2004-01-20 Published:2004-01-20

痕量金属的胶体结合态是海洋中金属的一种相当普遍的存在形式。胶体与痕量金属之间的相互作用影响着痕量金属在海水中的形态、迁移、生物可利用性及其归宿。总结了海洋胶体态金属的存在及其显著性,概述了胶体对金属在河口混合过程中行为的影响,并简要讨论了胶体在海水中痕量金属的固液相分配中的作用。

The colloidal fraction of trace metals is ubiquitous in seawater. The interaction between marine colloids and trace metals strongly controls the speciation, bioavailability, toxicity and the ultimate fate of metals in the ocean. The significance of colloidal trace metals and the role that colloidal particles play in the behavior of metals during the estuarine mixing is overviewed in this paper. A brief discussion was finally made on the potential role of colloids in the determination of distribution coefficients between particulate and dissolved phases, [WTBX]i.e.[WT], the role of colloids in the solid-liquid partitioning.
The available literature data have shown a quite variation of colloidal trace metals in the total dissolved fraction. For example, colloidal Fe, Cu, Cd, Zn, Al and Pb represent 4%~100%, 1%~78%, 0%~76%, 1%~14%, 3%~100%, 12%~100% of the total dissolved metal respectively. The fundamental reasons that caused such large variations in different estuarine settings are unclear yet, which may partially be related to the different techniques and/or protocols that have been applied in separating marine colloids.
The behavior of estuarine colloidal metals is rather complex, which is primarily controlled by the association of metals and the surface of organic matter or particles. Prior research has manifested a positive correlation between certain colloidal trace metals such as Cu and colloidal organic carbon, suggesting there exist strong organic ligands for certain metals. 
The role of colloid in the interaction of metals between different phases has been claimed to be important, and the occurrence of colloids may explain the so called “particle concentration effect” on the apparent distribution coefficient. 

中图分类号: 

[1]Santschi P H, Balnois E, Wilkinson K J, et al. Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy[J]. Limnology and Oceanography, 1998, 43: 896-908.
[2]Sigleo A C, Helz G R. Composition of estuarine colloidal material: Major and trace components[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2 501-2 509.
[3]Orlandini K A L. Colloidal behaviour of Actinides in an oligotrophic lake[J]. Environmental Science & Technology, 1990, 24: 706-712.
[4]McCarthy J F, Zachara J M. Subsurface transport of contaminants[J]. Environmental Science & Technology, 1989, 23: 496-502.
[5]Krom M D, Sholkvitz E R. Nature and reactions of dissolved organic matter in the interstitial water of marine sediments[J]. Geochimica et Cosmochimica Acta, 1977, 41: 1 565-1 573.
[6]Koike I, Shigemitsu H, Kazuki T, et al. Role of submicrometre particles in the ocean[J]. Nature, 1990, 345:242-243.
[7]Wells M L, Goldberg E D. Occurrence of small colloids in sea water[J]. Nature, 1991, 353:342-344.
[8]Wells M L, Goldberg E D. Marine submicron particles[J]. Marine Chemistry, 1992, 40:5-18.
[9]Wells M L, Goldberg E D. The distribution of colloids in the North Atlantic and Southern Oceans[J]. Limnology & Oceanography, 1994, 39:286-302
[10]Carlson D L, Brann M L, Mague T H, et al. Molecular weight distribution of dissolved organic matter in seawater determined by ultrafiltration: A reexamination[J]. Marine Chemistry, 1985, 16: 155-171.
[11]Sigleo A C. Amino acid composition of estuarine colloidal material[J]. Estuarine Coastal Shelf Science, 1983, 17:87-96.
[12]Cauwet G, Sidorov I. The biogeochemistry of Lena river: Organic carbon and nutrients distribution[J]. Marine Chemistry, 1996, 53: 211-217.
[13]SanudoWilhelmy S A, RiveraDuarte I, Flegal A R. Distribution of colloidal trace metals in the San Francisco Bay estuary[J]. Geochimica et Cosmochimica Acta, 1996, 60: 4 933-4 944.
[14]Buesseler K O, Bauer J, Chen R,et al. An intercomparison of crossflow filtration techniques used for sampling marine colloids: Overview and organic carbon results[J]. Marine Chemistry, 1996, 55: 1-31.
[15]Dai M H, Buesseler K O, Ripple P, et al. Evaluation of two crossflow ultrafiltration membranes for isolating marine organic colloids[J]. Marine Chemistry, 1998, 62: 117-136.
[16]Dai M H, Martin J M, Cauwet G. Colloidal organic carbon and trace metals[A]. In:Lasserre P,Marzollo A,eds. Venice Lagoon EcosystemInputs and Interactions between Land and Sea[C]. UK:Parthenon Publishing, 2000. 47-58.
[17]Guo L, Santschi P H, Warnken K W. Trace metal composition of colloidal organic material in marine environments[J]. Marine Chemistry, 2000, 70: 257-275.
[18]Dai M, Martin J M, Cauwet G. The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France) [J]. Marine Chemistry, 1995, 51: 257-275.
[19]Wells M L, Smith G J, Bruland K W. The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI[J]. Marine Chemistry, 2000, 71: 143-163.
[20]Dai M, Martin J M. First data on trace metal level and behaviour in two major Arctic riverestuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia[J]. Earth and Planetary Science Letters, 1995, 131: 127-141.
[21]Wen L, Santschi P H, Gill G,et al. Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase[J]. Marine Chemistry, 1999, 63: 185-212.
[22]Benoit G, OktayMarshall S D, Cantu A, et al. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filterretained particles, colloids, and solution in six Texas estuaries[J]. Marine Chemistry, 1994, 45: 307-336.
[23]Wen L, Stordal M C, Tang D, et al. An ultraclean crossflow ultrafiltration technique for the study of trace metal phase speciation in seawater[J]. Marine Chemistry, 1996, 55: 129-152.
[24]Bertine K K, VernonClark R. Elemental composition of the colloidal phase isolated by crossflow filtration from coastal seawater samples[J]. Marine Chemistry, 1996, 55: 189-204.
[25]Moran S B, Moore R M. The distribution of colloidal aluminum and organic carbon in coastal and open ocean waters off Nova Scotia[J]. Geochimicaek Cosmochimica Acta, 1989, 53: 2 519-2 527.
[26]Honeyman B D, Santschi P H. A “Brownianpumping” model for oceanic trace metal scavenging: Evidence from Th isotopes[J]. Journal of Marine Research, 1989, 47: 951-992.
[27]Greenamoyer J M, Moran S B. Investigation of Cd, Cu, Ni and 234Th in the colloidal size range in the Gulf of Maine[J]. Marine Chemistry, 1997, 57: 217-226.
[28] O'Connor D J, Connolly J P. The effect of concentration of adsorption solids on the partition coefficient[J]. Water Research, 1980, 14: 1 517-1 526.
[29] Honeyman B D, Santschi P H. Metals in aquatic systems[J]. Environmental Science & Technology, 1988, 22: 862-871.
[30] Morel F M M, Gschwend P M. The role of Colloids in the Partitioning of solutes in the natural waters[A]. In: W Stumm  ed.Aquatic Surface Chemistry[C]. New York: John Wiley & Sons Inc, 1987. 405-422.
[31] Dai M H. Rle des collodes dans le transfert du carbone organique et des éléments métaliques associés en milieu estiarien et ctièr, Universite Pierre & Marie Curie (Paris VI), France[D]. University of Paris VI,1995.
[32] Wells M L. Marine colloids and trace metals[A]. In: Hansell D A, Carlson C A,eds. Biogeochemistry of Marine Dissolved Organic Matter[C]. San Diego: Academic Press,2002.367-397.


[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[4] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[5] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[6] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[9] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[10] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[11] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[12] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[13] 冷疏影,李薇,汪建君,邵伟增,李刚,邢荣莲. 2019年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2019, 34(11): 1202-1211.
[14] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[15] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
阅读次数
全文


摘要