地球科学进展 ›› 2014, Vol. 29 ›› Issue (1): 104 -110. doi: 1001-8166(2014)01-0104-07

上一篇    下一篇

基于匹配追踪时-频分解技术的辫状河道油藏储层预测
孟阳( )   
  1. 中国石化胜利油田分公司开发处, 山东 东营 257000
  • 收稿日期:2013-08-19 修回日期:2013-11-20 出版日期:2014-03-01

Braided Channel Reservoir Prediction Based on Matching Pursuit Time-Frequency Decomposition

Yang Meng   

  1. Shengli Oilfield Company development department, SINOPEC, Dongying, Shandong 257000, China
  • Received:2013-08-19 Revised:2013-11-20 Online:2014-03-01 Published:2014-01-10

辫状河道沉积砂体是一类常见的油藏储集层, 砂体构造规律性差, 油水关系复杂, 油藏预测困难。利用地震道的子波分解来重构地震道, 通过把地震道分解成一系列不同属性子波, 用这些不同属性子波表述的地震道就可以得到不同的地层反射。由匹配追踪得到的地震信号具有很高的瞬时谱聚焦性, 使得时—频分解技术完全重构地震信号非常简单。采用匹配追踪时—频分解技术对垦东701井区地震资料进行了解释, 极大地改善了油藏储层的可解释性, 使得地震资料反射特征和井资料相关性较好。基于该技术的处理结果, 对垦东701井区明化镇和馆陶组地层的辫状河道沉积砂体的分布进行了预测, 预测的储层分布辫状河道特征十分明显, 并利用预测结果部署了3口井位, 预测结果和钻遇结果完全吻合。

The braided channel sedimentary sand is a kind of common oil reservoir, which is characteristic of poor regularity structure and complicated oilwater relation. Seismic trace can be remodeled by wavelet decomposition, namely seismic trace is decomposed into a series of different attribute wavelets. The different reflection is obtained by the different attribute wavelets, thus prediction accuracy of braided channel sedimentary sand is improved. The seismic signal treated by matching pursuit method has good focusing capability of instantaneous spectrum, based on which the seismic signal is simply and rapidly remodeled by timefrequency decomposition. The seismic data of Kendong 701 area were processed based on matching pursuit timefrequency decomposition. The results showed that the interpretability of oil reservoir was improved and the seismic reflection characteristics and drilling data were well related. The braided channel sedimentary sands of Minghuazheng and Guantao group strata in Kendong 701 area were predicted, and the results showed that the reservoir distribution had the obvious braided channel features. Based on the predictions, three wells were located and the prediction and drilled results were consistent.

中图分类号: 

图1 垦东701井区已钻井油藏剖面
Fig.1 The oil reservoir profile with drilled well in Kendong 701 well area
图2 时频分解后的时间域子波及其振幅谱
Fig.2 The domain wavelet and amplitude treated with time-frequency decomposition
图3 原始地震剖面
Fig.3 The original seismic section
图4 谱平衡(高截频率80 Hz)后的地震剖面
Fig.4 The seismic section with spectral balance(high cut 80hz
图5 子波重构处理后的地震剖面
Fig.5 The wavelet reconstruction seismic section
图6 原始地震数据沿Ng4 1层提取的振幅切片
Fig.6 The amplitude slice at Ng4 1 section based on original seismic data
图7 处理后地震数据沿Ng4 1层提取的振幅切片
Fig.7 The amplitude slice at Ng4 1 section based on seismic data treated with time-frequency decomposition
图8 砂体厚度和构造分布图
Fig.8 The distribution of sand body
[1] Miall A D. Lithofacies types and vertical profile models in braided river deposits:A summary[M]//Maiall A D, ed. Fluvial Sedimentology. Alberta, Canada: Canandian Society of Petroleum Geology Memoir 5, 1978:597-604.
[2] Wang Gaiyun, Yang Shaochun, Liao Feiyan, et al. Hierarchical structure of barrier beds and interbeds in Braided River reservoirs[J]. Natural Gas Geoscience, 2009, 20(3):378-383.
[王改云, 杨少春, 廖飞燕, 等. 辫状河储层中隔夹层的层次结构分析[J]. 天然气地球科学, 2009, 20(3):378-383.]
[3] Yilmaz O. Seismic Data Analysis[M]. Tulsa:Society of Exploration Geophysicists, 1987.
[4] Wang Yanghua. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1):13-20.
[5] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Transactions on Aignal Processing, 1993, 41(12):3 397-3 415.
[6] Zhang Fanchang, Li Chuanhui. Orthogonal time-frequency atom based fast matching pursuit for seismic signals[J].Chinese Journal of Geophysics, 2012, 55(1):277-283.
[张繁昌, 李传辉. 基于正交时频原子的地震信号快速匹配追踪[J].地球物理学报, 2012, 55(1):277-283.]
[7] Castagna J P, Sun S J, Siegfried R W. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2):120-127.
[8] Li Chuanhui, Zhang Fanchang. Variable resolution matching pursuit spectrum imaging of seismic signals[J]. Geophysical Prospecting for Petroleum, 2012, 51(3):213-218.
[李传辉, 张繁昌. 地震信号可变分辨率匹配追踪频谱成像方法[J]. 石油物探, 2012, 51(3):213-218.]
[9] Feng Bin, Zhao Fenghua, Wang Shuhua. Application of spectral decomposition technique in fluvial sand body prediction[J]. Advances in Earth Science, 2012, 27(5): 510-514, doi:10.11867/j.issn.1001-8166.2012.05.0510.
[冯斌, 赵峰华, 王淑华. 地震分频解释技术在河道砂预测中的应用[J]. 地球科学进展, 2012, 27(5): 510-514, doi:10.11867/j.issn.1001-8166.2012.05.0510.]
[1] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
阅读次数
全文


摘要