地球科学进展 ›› 2014, Vol. 29 ›› Issue (2): 227 -237. doi: 1001-8166(2014)02-0227-11

上一篇    下一篇

离心实验在污染物迁移研究中的应用 *
喻立珊 1( ), 曹国亮 1, 许模 2, 刘杰 1, *( ), 郑春苗 1, 3   
  1. 1. 北京大学工学院水资源研究中心,北京 100871
    2. 成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059
    3. 美国阿拉巴马大学地质科学系,塔斯卡卢萨, 阿拉巴马 35487
  • 收稿日期:2013-09-17 修回日期:2014-01-10 出版日期:2014-03-10
  • 通讯作者: 刘杰 E-mail:lsyu@pku.edu.cn;jie.liu@pku.edu.cn
  • 基金资助:
    [HT6SS][ZK(]国家自然科学基金重点项目#cod#x0201c;小尺度优先水流通道对地下水污染物迁移过程和修复的控制作用:基于野外试验的基础研究#cod#x0201d;(编号:41330632);地质灾害防治与地质环境保护国家重点实验室自主研究课题#cod#x0201c;非饱和带溶质迁移转化规律试验研究#cod#x0201d;(编号:SKLGP2011Z001)资助.

Application of Centrifuges in Experimental Studies of Contaminant Transport

Lishan YU 1, Guoliang CAO 1, Mo XU 2, Jie LIU 1, Chunmiao ZHENG 1, 3   

  1. 1. Center for Water Research,College of Engineering,Peking University,Beijing 100871, China
    2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059,China
    3. Department of Geological Sciences, University of Alabama,Tuscaloosa, Alabama 35487,USA
  • Received:2013-09-17 Revised:2014-01-10 Online:2014-03-10 Published:2014-02-10

离心实验模拟以其可以获得与原型一致的应力水平并且能够大大缩短原型历时而被应用于污染物迁移实验研究。在离心相似理论及离心实验模拟的相似基础上,重点回顾了离心机在饱和带水分、非饱和带水分、保守性溶质、NAPLs、重金属、核素迁移以及污染场地修复方面的实验应用。最后讨论了离心模拟中土壤预制和加速度选择的问题,并简单介绍了离心监测方法。可以得出结论:离心机能够成功用于各类物质迁移的实验研究中,离心实验模拟能够为理论和数值等分析方法快速提供真实可靠的参数依据,但离心实验的理论基础和监测方法需要进一步完善,此外也应积极开展更接近实际情况下的离心实验模拟研究。

Because the level of stress identical to that for the prototype can be attained and the experimental duration can be shortened greatly, a centrifuge is advantageous for experimental studies of flow and transport processes in the laboratory setting. This paper provides an overview of the theory of scaling laws and basic principles of centrifuge experiment and modeling, as well as some common applications of centrifuges in the study of water and moisture flow in saturated and unsaturated soils, conservative tracer transport, NAPLs contamination, heavy metal migration, radioactive nuclide movement, and contaminated land remediation. This paper also points out certain cautions that should be exercised during preparation of soil samples and selection of centrifugal accelerations. For example, the compaction of soil samples should be carefully monitored so as not to affect the reproducibility of the experiment, and the centrifuge acceleration should be maintained below the threshold where Darcy#cod#x02019;s law becomes invalid. In addition, this paper briefly discusses the recent advances in measurement technologies relevant to centrifugebased experiments. Many successful applications have demonstrated that centrifuges are a useful tool for studying numerous flow and transport phenomena experimentally and that centrifuge modeling can rapidly and reliably provide laboratory data for developing flow and transport theories and numerical simulation methods. In the future, basic theories and monitoring methods of centrifuge experiments should be further developed and improved so that they can be applied to study more complex problems that are closer to actual situations.

中图分类号: 

图1 离心模拟实验示意图
Fig.1 Schematic diagram of centrifuge modeling experiments
表1 离心模拟相似比
Table 1 Scaling laws of centrifuge modeling
表2 离心模拟无量纲数
Table 2 Dimensionless numbers during centrifuge modeling
[1] Arulanandan K, Thompson P Y, Kutter B L, et al. Centrifuge modelling of transport processes for pollutants in soils[J]. Journal of Geotechnical Engineering, 1988, 114(2): 185-205.
[2] Lynch R J, Allersma H G B, Barker H, et al. Development of sensors, probes and imaging techniques for pollutant monitoring in geo-environmental model tests[J]. International Journal of Physical Modelling in Geotechnics, 2001, 1(4): 17-27.
[3] Mitchell R J. Centrifuge modelling as a consulting tool[J]. Canadian Geotechnical Journal, 1991, 28(1): 162-167.
[4] Mitchell R J. The eleventh annual RM Hardy Keynote address, 1997: Centrifugation in geoenvironmental practice and education[J]. Canadian Geotechnical Journal, 1998, 35(4): 630-640.
[5] Zhang J, Lo Irene M C. Centrifuge study of long term transport behavior and fate of copper in soils at various saturation of water, compaction and clay content[J]. Soil and Sediment Contamination, 2008, 17(3): 237-255.
[6] Zhang Jianhong, Hu Liming. Migration behavior of heavy metal and LNAPLs in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 277-280.
[张建红,胡黎明. 重金属离子和LNAPLs在非饱和土中的运移规律研究[J]. 岩土工程学报, 2006, 28(2): 277-280.]
[7] Zhang Jianhong, Lo Irene M C, Hu Liming. Centrifuge modeling of moisture and contaminant migration in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 622-625.
[张建红,劳敏慈,胡黎明. 非饱和土中水分迁移及污染物扩散的离心模拟[J]. 岩土工程学报, 2002, 24(5): 622-625.]
[8] Zhang Jianhong, L#cod#x000fc; He, Wang Wencheng. Centrifuge modeling of copper ionic migration in unsaturated soils[J]. Rock and Soil Mechanics, 2006, 27(11): 1 885-1 890.
[张建红,吕禾,王文成. 铜离子在非饱和土中迁移的离心模型试验研究[J]. 岩土力学, 2006, 27(11): 1 885-1 890.]
[9] Zhang Jianhong, Yan Dong. Centrifuge modeling of copper ion migration in unsaturated silty clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 792-796.
[张建红,严冬. 非饱和粉质砂土中铜离子迁移的离心模型试验研究[J]. 岩土工程学报, 2004, 26(6): 792-796.]
[10] Lo Irene M C, Zhang J, Hu L. Centrifuge modeling of cadmium migration in saturated and unsaturated soils[J]. Soil & Sediment Contamination, 2005, 14(5): 417-431.
[11] Lo Irene M C, Zhang J, Hu L, et al. Effect of soil stress on cadmium transport in saturated soils[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2003, 7(3): 170-176.
[12] Cargill K W, Ko H. Centrifugal modeling of transient water flow[J]. Journal of Geotechnical Engineering, 1983, 109(4): 536-555.
[13] Kumar P R. Scaling laws and experimental modelling of contaminant transport mechanism through soils in a geotechnical centrifuge[J]. Geotechnical and Geological Engineering, 2007, 25(5): 581-590.
[14] Taylor R N. Geotechnical Centrifuge Technology[M]. London, UK: Blackie Academic & Professional, 1995.
[15] Bear J. Dynamics of Fuids in Porous Media[M]. New York: American Elsevier Publishing Company Inc, 1972.
[16] Cooke B, Mitchell R J. Physical modelling of a dissolved contaminant in an unsaturated sand[J]. Canadian Geotechnical Journal, 1991, 28(6): 829-833.
[17] Singh D N, Kuriyan S J. Estimation of hydraulic conductivity of unsaturated soils using a geotechnical centrifuge[J]. Canadian Geotechnical Journal, 2002, 39(3): 684-694.
[18] Kumar P R. An experimental methodology for monitoring contaminant transport through geotechnical centrifuge models[J]. Environmental Monitoring and Assessment, 2006, 117(1/3): 215-233.
[19] Kumar R P, Singh D N. Geotechnical centrifuge modeling of chloride diffusion through soils[J]. International Journal of Geomechanics, 2012, 12(3): 327-332.
[20] Singh D N, Gupta A K. Modelling hydraulic conductivity in a small centrifuge[J]. Canadian Geotechnical Journal, 2000, 37(5): 1 150-1 155.
[21] Nimmo J R, Rubin J, Hammermeister D. Unsaturated flow in a centrifugal field: Measurement of hydraulic conductivity and testing of Darcy#cod#x02019;s law[J]. Water Resources Research, 1987, 23(1): 124-134.
[22] Nakajima H, Hirooka A, Takemura J, et al. Centrifuge modeling of one-dimensional subsurface contamination[J]. Journal of the American Water Resources Association, 1998, 34(6): 1 415-1 425.
[23] Appelo C A J, Postma D. Geochemistry, Groundwater and Pollution[M]. The Netherlands: Balkema Rotterdam A A,1993.
[24] Conca J L, Wright J. Diffusion and flow in gravel, soil, and whole rock[J]. Applied Hydrogeology, 1992, 1(1): 5-24.
[25] Nimmo J R, Mello K A. Centrifugal techniques for measuring saturated hydraulic conductivity[J]. Water Resources Research, 1991, 27(6): 1 263-1 269.
[26] Goforth G F, Townsend F, Bloomquist D. Saturated and unsaturated fluid flow in a centrifuge[C]∥Ko H Y, McLean F G, eds. Centrifuge in Soil Mechanics. Rotterdam: Balkema, 1991: 497-502.
[27] Mitchell R J. Centrifuge techniques for testing clay liner samples[J]. Canadian Geotechnical Journal, 1994, 31(4): 577-583.
[28] D6527-00(2008), Standard Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady-State Centrifugation[S].
[29] McCartney J S, Zornberg J G. Centrifuge permeameter for unsaturated soils. II: Measurement of the hydraulic characteristics of an unsaturated clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(8): 1 064-1 076.
[30] Nimmo J R. Experimental testing of transient unsaturated flow theory at low water content in a centrifugal field[J]. Water Resources Research, 1990, 26(9): 1 951-1 960.
[31] Dell#cod#x02019;Avanzi E, Zornberg J G, Cabral A R. Suction profiles and scale factors for unsaturated flow under increased gravitational field[J]. Soils and Foundations, 2004, 44(3): 79-89.
[32] Zornberg J G, McCartney J S. Centrifuge permeameter for unsaturated soils. I: Theoretical basis and experimental developments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(8): 1 051-1 063.
[33] Conca J L, Wright J. The UFA method for rapid, direct measurements of unsaturated transport properties in soil, sediment, and rock[J]. Australian Journal of Soil Research, 1998, 36: 291-315.
[34] Nakajima H, Stadler A T. Centrifuge modeling of one-step outflow tests for unsaturated parameter estimations[J]. Hydrology and Earth System Sciences, 2006, 10(5): 715-729.
[35] Culligan P, Barry D, Parlange J. Scaling unstable infiltration in the vadose zone[J]. Canadian Geotechnical Journal, 1997, 34(3): 466-470.
[36] Khaleel R, Relyea J F, Conca J L. Evaluation of van Genuchten-Mualem relationships to estimate unsaturated hydraulic conductivity at low water contents[J]. Water Resources Research, 1995, 31(11): 2 659-2 668.
[37] van den Berg E H, Perfect E, Tu C, et al. Unsaturated hydraulic conductivity measurements with centrifuges: A review[J]. Vadose Zone Journal, 2009, 8(3): 531-547.
[38] Goforth G, Vicevich R, Townsend F, et al. Technical Feasibility of Centrifugal Techniques for Evaluating Hazardous Waste Migration[M]. Gainesville, EL:Florida University Gainesville Department of Civil Engineering, 1987.
[39] Poulose A, Nair S R, Singh D N. Centrifuge modeling of moisture migration in silty soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 748-752.
[40] Mitchell R J. Matrix suction and diffusive transport in centrifuge models[J]. Canadian Geotechnical Journal, 1994, 31(3): 357-363.
[41] Li L, Barry D, Stone K. Centrifugal modelling of nonsorbing, nonequilibrium solute transport in a locally inhomogeneous soil[J]. Canadian Geotechnical Journal, 1994, 31(4): 471-477.
[42] Li L, Barry D A, Hensley P J, et al. Nonreactive chemical transport in structired soil: The potential for centrifuge modelling[C]∥Geotechnical Management of Waste and Contamination. Rotterdam, Netherlands: Balkema, 1993: 425-431.
[43] McKinley J, Price B, Lynch R, et al. Centrifuge modelling of the transport of a pulse of two contaminants through a clay layer[J]. G#cod#x000e9;otechnique, 1998, 48(3): 421-425.
[44] Griffioen J W, Barry D A. Centrifuge modelling of solute transport during partially saturated flow[J]. Environmental Modelling & Software, 1999, 14(2/3): 191-201.
[45] Griffioen J W, Barry D A. Centrifuge modeling of unstable infiltration and solute transport[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(7): 556-565.
[46] Celorie J A, Vinson T S, Woods S L, et al. Modeling solute transport by centrifugation[J]. Journal of Environmental Engineering,1989, 115(3): 513-526.
[47] Zhan Liangtong, Zeng Xing, Li Yuchao, et al. Centrifuge modeling for chloridion breaking through Kaolin clay liner with high hydraulic head[J]. Journal of Yangtze River Scientific Research Institute,2012, 29(2): 83-89.
[詹良通,曾兴,李育超,等. 高水头条件下氯离子击穿高岭土衬垫的离心模型试验研究[J]. 长江科学院院报, 2012, 29(2): 83-89.]
[48] Chen Jiajun,Yang Jian,Tian Liang. Advances in NAPLs transport experiment in porous media based on pore network model[J]. Advances in Earth Science,2007, 22(10): 997-1 004.
[陈家军,杨建,田亮. 基于孔隙网络模型的非水溶相液体运移实验研究进展[J]. 地球科学进展, 2007, 22(10): 997-1 004.]
[49] Hu Liming, Lo Irene M C, Pu Jialiu, et al. Centrifuge modeling of LNAPLs migration in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 690-694.
[胡黎明,劳敏慈,濮家骝,等. LNPALs在非饱和土中迁移的离心试验模拟[J]. 岩土工程学报, 2002, 24(6): 690-694.]
[50] Hu Liming, Hao Rongfu, Yin Kunting, et al. Experimental study of BTEX transport in an unsaturated soil and groundwater system[J]. Journal of Tsinghua University (Science and Technology),2003, 43(11): 1 546-1 549, 1 553.
[胡黎明,郝荣福,殷昆亭,等. BTEX在非饱和土和地下水系统中迁移的试验研究[J]. 清华大学学报:自然科学版, 2003, 43(11): 1 546-1 549, 1 553.]
[51] Hu Liming, Xing Weiwei, Zhou Xiaowen. Laboratory testing and numerical simulation of multiphase flow in unsaturated soils[J]. Engineering Mechanics,2008, 25(11): 162-166.
[胡黎明,邢巍巍,周小文. 非饱和土中多相流动的试验研究和数值模拟[J]. 工程力学, 2008, 25(11): 162-166.]
[52] Knight M, Mitchell R. Modelling of Light Nonaqueous Phase Liquid (LNAPL) releases into unsaturated sand[J]. Canadian Geotechnical Journal, 1996, 33(6): 913-925.
[53] Esposito G, Allersma H, Selvadurai A. Centrifuge modeling of LNAPL transport in partially saturated sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(12): 1 066-1 071.
[54] Soga K, Kawabata J, Kechavarzi C, et al. Centrifuge modeling of nonaqueous phase liquid movement and entrapment in unsaturated layered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(2): 173-182.
[55] Culligan P, Banno K, Barry D, et al. Preferential flow of a nonaqueous phase liquid in dry sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(4): 327-337.
[56] Pantazidou M, Abu-Hassanein Z S, Riemer M F. Centrifuge study of DNAPL transport in granular media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 105-115.
[57] Xu Yanbing, Wei Changfu, Li Huan, et al. Finite element analysis of coupling seepage and deformation in unsaturated soils[J]. Rock and Soil Mechanics,2009, 30(5): 1 490-1 496.
[徐炎兵,韦昌富,李幻,等. 非饱和土渗流与变形耦合问题的有限元分析[J]. 岩土力学, 2009, 30(5): 1 490-1 496.]
[58] Ataieashtiani B, Hassanizadeh S, Oung O, et al. Numerical modelling of two-phase flow in a geocentrifuge[J]. Environmental Modelling & Software, 2003, 18(3): 231-241.
[59] Levy L C, Culligan P J, Germaine J T. Use of the geotechnical centrifuge as a tool to model dense nonaqueous phase liquid migration in fractures[J]. Water Resources Research, 2002, 38(8): 31-34.
[60] Li Lujiu, Xu Shengjun, Li Guangxiong, et al. Research progress of the pollution and phytoremediation for heavy metals in soil[J]. Journal of Anhui Agricultural Sciences,2004, 32(1): 156-158.
[李录久,许圣君,李光雄,等. 土壤重金属污染与修复技术研究进展[J]. 安徽农业科学, 2004, 32(1): 156-158.]
[61] Gurung S, Almeida M, Bicalho K. Migration of zinc through sedimentary soil models[C]∥Centrifuge 98. Tokyo: Taylor and Francis, 1998: 589-594.
[62] Lo Irene M C, Zhang J, Hu L, et al. Centrifuge study of cadmium migration in saturated soils[C]∥Physical Modelling in Geotechnics: ICPMG#cod#x02019;02. Proceedings of the International Conference. Newfoundland, Canada: AA Balkema, 2002: 385-389.
[63] Basford J, Goodings D, Torrents A, et al. Fate and transport of lead through soil at 1 g and in the centrifuge[C]∥Physical Modelling in Geotechnics: ICPMG#cod#x02019;02. Proceedings of the International Conference. Newfoundland, Canada: AA Balkema, 2002: 379-383.
[64] Hutchison J M, Seaman J C, Aburime S A, et al. Chromate transport and retention in variably saturated soil columns[J]. Vadose Zone Journal, 2003, 2(3): 702-714.
[65] Zimmie T, Mahmud M, De A. Accelerated physical modelling of radioactive waste migration in soil[J]. Canadian Geotechnical Journal, 1994, 31(5): 683-691.
[66] Gamerdinger A P, Kaplan D I, Wellman D M, et al. Two-region flow and decreased sorption of uranium (VI) during transport in hanford groundwater and unsaturated sands[J]. Water Resources Research, 2001, 37(12): 3 155-3 162.
[67] Gamerdinger A P, Kaplan D I, Wellman D M, et al. Two-region flow and rate-limited sorption of uranium (VI) during transport in an unsaturated silt loam[J]. Water Resources Research, 2001, 37(12): 3 147-3 153.
[68] Moo-Young H, Myers T, Tardy B, et al. Determination of the environmental impact of consolidation induced convective transport through capped sediment[J]. Journal of Hazardous Materials, 2001, 85(1): 53-72.
[69] Moo-Young H, Myers T, Tardy B, et al. Modeling contaminant transport through capped dredged sediment using a centrifuge[J]. Journal of Soils and Sediments, 2002, 2(3): 117-128.
[70] Gurumoorthy C, Singh D. Diffusion of iodide, cesium and strontium in charnockite rock mass[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 262(3): 639-644.
[71] Gurumoorthy C, Singh D. A methodology to evaluate the diffusion coefficient of radionuclides through rock mass in a short experimental duration[C]∥Waste Management 2004 Symposium. Tucson, AZ, 2004.
[72] Gurumoorthy C, Kusakabe O. Experimental methodology to assess migration of iodide ion through Bentonite-Sand Backfill in a near surface disposal facility[J].Indian Journal of Science and Technology, 2012, 5(1): 1 834-1 839.
[73] Kaplan D, Serne R, Owen A, et al. Radionuclide Adsorption Distribution Coefficients Measured in Hanford Sediments for the Low Level Waste Performance Assessment Project[R]. Washington DC: Pacific Northwest Laboratory, 1996.
[74] Timms W, Hendry M J, Muise J, et al. Coupling centrifuge modeling and laser ablation inductively coupled plasma mass spectrometry to determine contaminant retardation in clays[J]. Environmental Science & Technology, 2009, 43(4): 1 153-1 159.
[75] Hu L, Lo Irene M C, Meegoda J N. Centrifuge testing of LNAPL migration and soil vapor extraction for soil remediation[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006, 10(1): 33-40.
[76] Hao Rongfu,Hu Liming,Xing Weiwei. Centrifuge modeling of removing volatile contaminants in soils[J]. Rock and Soil Mechanics,2004, 25(7): 1 037-1 040.
[郝荣福,胡黎明,邢巍巍. 土壤中可挥发性污染物清除的离心试验研究[J]. 岩土力学, 2004, 25(7): 1 037-1 040.]
[77] Hellawell E, Savvidou C. A Study of Contaminant Transport Involving Density Driven Flow and Hydrodynamic Clean Up[M]. London, UK: University of Cambridge, Department of Engineering, 1994.
[78] Hellawell E, Savvidou C, Booker J. Modelling of contaminated land reclamation[J]. Soils and Foundations, 1994, 34(3): 71-79.
[79] Ratnam S, Culligan-Hensley P, Germaine J. LNAPL entrapment under hydraulic flushing[C]∥Proceedings of the Second International Congress on Environmental Geotechnics: IS-Osaka96. Japan, 1996.
[80] Ratnam S, Culligan-Hensley P, Germaine J. Modeling the behavior of LNAPLS under hydraulic flushing[C]∥Non-Aqueous Phase Liquids (NAPLs) in Subsurface Environment: Assessment and Remediation. Washington DC: ASCE 1996 National Convention,1996.
[81] Penn M, Savvidou C, Hellawell E. Centrifuge modelling of the removal of heavy metal pollutants using electrokinetics[C]∥Environmental Geotechnics, Proceedings of the Second International Congress on Environmental Geotechnics: IS-Osaka96. Japan, 1996.
[82] Liu Zhibin,Fang Wei,Chen Zhilong. Advances in air sparging technology of saturated zone[J]. Advances in Earth Science,2013, 28(10): 1 154-1 159.
[刘志彬,方伟,陈志龙. 饱和带地下水曝气修复技术研究进展[J]. 地球科学进展, 2013, 28(10): 1 154-1 159.]
[83] Hu L, Meegoda J N, Du J, et al. Centrifugal study of zone of influence during air-sparging[J]. Journal of Environmental Monitoring, 2011, 13(9): 2 443-2 449.
[84] Marulanda C, Culligan P J, Germaine J T. Centrifuge modeling of air sparging#cod#x02014;A study of air flow through saturated porous media[J]. Journal of Hazardous Materials,2000, 72(2): 179-215.
[85] Hu L, Wu X, Liu Y, et al. Physical modeling of air flow during air sparging remediation[J]. Environmental Science & Technology, 2010, 44(10): 3 883-3 888.
[86] Meegoda J N, Hu L. A review of centrifugal testing of gasoline contamination and remediation[J]. International Journal of Environmental Research and Public Health, 2011, 8(8): 3 496-3 513.
[87] Culligan P J, Savvidou C, Barry D A. Centrifuge modelling of contaminant transport processes[J]. Electronic Journal of Geotechnical Engineering, 1996, 1:1-19.
[88] Caicedo B, Tristancho J, Thorel L. Potentialities and challenges of centrifuge modelling on unsaturated soils[C]∥Physical Modelling in Geotechnics. Zurich, Switzerland: Taylor & Francis, 2010: 105-110.
[89] Dane J H, Topp G C. Methods of Soil Analysis. Part 4. Physical Methods[M]. Madison Wisconsin: Soil Science Society of America, 2002: 903-916.
[90] Timms W A, Hendry M J. Long-term reactive solute transport in an aquitard using a centrifuge model[J]. Ground Water, 2008, 46(4): 616-628.
[91] Depountis N, Harris C, Davies M C R. An assessment of miniaturised electrical imaging equipment to monitor pollution plume evolution in scaled centrifuge modelling[J]. Engineering Geology, 2001, 60(1/4): 83-94.
[1] 宋孝玉,李亚娟,蒋俊,马玉霞. 非饱和土壤水分运动参数空间变异性研究进展与展望[J]. 地球科学进展, 2008, 23(6): 613-618.
阅读次数
全文


摘要