地球科学进展 ›› 2014, Vol. 29 ›› Issue (1): 68 -79. doi: 1001-8166(2014)01-0068-12

上一篇    下一篇

生物炭对土壤理化性质影响的研究进展
武玉 1, 2( ), 徐刚 1, *( ), 吕迎春 1, 邵宏波 1   
  1. 1.中国科学院烟台海岸带研究所, 山东 烟台, 264003
    2.中国科学院大学, 北京 100049
  • 收稿日期:2013-08-27 修回日期:2013-11-21 出版日期:2014-03-01
  • 通讯作者: 徐刚 E-mail:ywu@yic.ac.cn;gxu@yic.ac.cn
  • 基金资助:
    国家自然科学基金项目“低分子有机酸对土壤中磷的释放动力学”(编号:41001137);中国科学院烟台海岸带研究所“一三五”发展规划项目“黄河三角洲陆海界面过程、生态演变与修复技术”(编号:Y254021031)资助

Effects of Biochar Amendment on Soil Physical and Chemical Properties: Current Status and Knowledge Gaps

Yu Wu 1, 2( ), Gang Xu 1( ), Yingchun Lü 1, Hongbo Shao 1   

  1. 1.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
    2.Univesity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-08-27 Revised:2013-11-21 Online:2014-03-01 Published:2014-01-10

生物炭是有机物原料在完全或者部分缺氧条件下, 经过高温热裂解(通常<700 ℃)产生的一类富碳、高度芳香化和稳定性高的有机物质。生物炭为全球气候变化、粮食危机和生态污染修复等提供了综合解决方案。生物炭对土壤物理和化学性质具有明显的改良作用。其多孔特性和比表面积有利于土壤聚集水分、提高孔隙度、降低容重, 从而为植物生长提供良好的环境。同时, 生物炭是酸性土壤一种理想的改良剂。其含有的养分元素可直接输入土壤, 其表面电荷和官能团有利于土壤养分的保留。但是, 生物炭由于受原材料和制备条件的影响, 各研究结论并不一致。综述了生物炭输入对土壤物理和化学性质影响的研究进展, 指出了目前研究存在的不足和需要加强的方面, 从而为生物炭的应用和推广提供一定的思路。

Biochar is an organic material with high carbon content, most aromatic structure and great stability resulting from high temperature thermal conversion (usually < 700 ℃) of organic materials under the completely or in part anoxic condition. Due to its stable chemical properties, biochar has received widely attention as a strategy to reduce greenhouse gas emissions. In addition, biochar shows great potential in soil improvement and environmental pollution remediation, and provides a comprehensive solution for the global climate change, food crisis and ecological pollution remediation. Biochar is a carbon rich material, in association with porous characteristics and high surface area which are favorable to accumulating soil moisture, to increasing the porosity, to reducing density and bulk density, and to promoting the formation of soil aggregation. All the above soil physical improvement can provide a good environment for the growth of plants. Furthermore, biochar is an ideal acidic soil amendment which can improve the pH of acidic soil. It contains nutrient element which can be directly released into soil, and its surface charge and functional groups are conducive to soil nutrient retention, such as the reduced leaching of NH+4 and NO-3, PO3-4, therefore improve the efficiency of nutrient elements. However, the effect of biochar amendments highly influenced by raw materials and pyrolysis conditions is of inconsistent and sometimes even contrast results can be concluded. In this paper, we summarize the current status and knowledge gaps about the effect of biochar amendments on soil physical and chemical properties and some suggestions are also strengthened. Finally, some possible negative impacts of biochar application and research suggestions are discussed in order to better use of biochar in agriculture.

中图分类号: 

图1 生物质热裂解转化生物炭的基本流程与产物
Fig.1 Flowchart and products of biochar production through biomass pyrolysis
图2 生物炭理化特性与常见土壤障碍性引子对比
Fig.2 Comparisons of soil barrier properties and potential improvements withbiochar application into soil
图3 温度对不同原料的生物炭CEC的影响 PB.松树皮;PN.花生壳; PD.锯末; PC.松心片丸; HW.硬木
Fig.3 Effect of production temperature on CEC PB.pinebark;PN.peanut hull pellets;SD.pinesawdust; PC.pine chip pellets;HW. Hardwood
表1 不同土壤改良剂的EC和pH
Table 1 EC and pH values of different soil amendments
表2 使用生物炭对农作物产量的影响
Table 2 Effects of biochar application on crop yield
[1] Harder B. Smoldered-Earth policy: Created by ancient amazonian natives, fertile, dark soils retain abundant carbon[J]. Science News, 2006, 169(9):133.
[2] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7 141): 143-144.
[3] Marris E. Putting the carbon back: Black is the new green[J]. Nature, 2006, 442(7 103): 624-626.
[4] Renner R. Rethinking biochar[J]. Environmental Science & Technology, 2007, 41(17): 5 932-5 933.
[5] Xu G, Lü Y, Sun J, et al. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications[J]. Clean-Soil, Air, Water, 2012, 40(10): 1 093-1 098.
[6] Lehmann J. Amazonian Dark Earths: Origin, Properties, Management[M]. Netherlands: Springer, 2003.
[7] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. Csiro Land and Water Science Report, 2009, 5(9): 17-31.
[8] Verheijen F, Jeffery S, Bastos A C, et al. Biochar application to soils[C]//Institute for Environment and Sustainability, Luxembourg, 2010.
[9] Zeelie A. Effect of Biochar on Selected Soil Physical Properties of Sandy Soil with Low Agricultural Suitability[D]. Stellenbosch: Stellenbosch University, 2012.
[10] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical midwestern agricultural soil[J]. Geoderma, 2010, 158(3): 443-449.
[11] Eastman C M. Soil Physical Characteristics of An Aeric Ochraqualf Amended with Biochar[D]. Columbus:The Ohio State University, 2011.
[12] Soane B. The role of organic matter in soil compactibility: A review of some practical aspects[J]. Soil and Tillage Research, 1990, 16(1): 179-201.
[13] Steiner C, Teixeira W G, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 2007, 291(1/2): 275-290.
[14] Li Deqin, Duan Yunxia, Zhang Shuwen. Soil moisture measurement and simulation: A review[J]. Advances in Earth Science, 2012, 27(4): 424-434, doi: 10.11867/j.issn.1001-8166.2012.04.0424.
[李得勤, 段云霞, 张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434, doi: 10.11867/j.issn.1001-8166.2012.04.0424.]
[15] Kolb S E, Fermanich K J, Dornbush M E, et al. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1 173-1 181.
[16] Tryon E H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils[J]. Ecological Monographs, 1948, 18(1): 81-115.
[17] Briggs C M, Breiner J, Graham R, et al. Contributions of pinus ponderosa charcoal to soil chemical and physical properties[C]//The ASACSSA-SSSA International Annual Meetings Salt Lake City, USA, 2005.
[18] Oguntunde P G, Fosu M, Ajayi A E, et al. Effects of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology and Fertility of Soils, 2004, 39(4): 295-299.
[19] Post D F, Fimbres A, Matthias A D, et al. Predicting soil albedo from soil color and spectral reflectance data[J]. Soil Science Society of America Journal, 2000, 64(3): 1 027-1 034.
[20] Chintala R, Schumacher Thomas E, McDonald Louis M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean-Soil, Air, Water, 2013, 41(9999):1-9.
[21] Novak J, Busscher W, Laird D, et al. Impact of biochar amendment on fertility of a southeastern Coastal Plain soil[J]. Soil Science, 2009, 174(2): 105-112.
[22] Hossain M K, Strezov V, Chan K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (< i> Lycopersicon esculentum)[J]. Chemosphere, 2010, 78(9): 1 167-1 171.
[23] Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the Asabe, 2008, 51(6): 2 061-2 069.
[24] Gaskin J W, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Transactions of the Asabe, 2008, 51(6): 2 061-2 069.
[25] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1 719-1 730.
[26] Glaser B, Haumaier L, Guggenberger G, et al. The Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1): 37-41.
[27] Raveendran K, Ganesh A, Khilar K C, et al. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel, 1995, 74(12): 1 812-1 822.
[28] Deenik J L, McClellan T, Uehara G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations[J]. Soil Science Society of America Journal, 2010, 74(4): 1 259-1 270.
[29] Lal R. Sequestering carbon in soils of agro-ecosystems[J]. Food Policy, 2011, 36: S33-S39.
[30] Gaunt J L, Lehmann J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production[J]. Environmental Science & Technology, 2008, 42(11): 4 152-4 158.
[31] Vaccari F P, Baronti S, Lugato E, et al. Biochar as a strategy to sequester carbon and increase yield in durum wheat[J]. European Journal of Agronomy, 2011, 34(4): 231-238.
[32] Kimetu J M, Lehmann J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents[J]. Soil Research, 2010, 48(7): 577-585.
[33] Lehmann J, Joseph S. Biochar for Environmental Management: Science and Technology[M]. London: Earthscan, 2009.
[34] Spokas K A, Novak J M, Venterea R T, et al. Biochar’s role as an alternative N-fertilizer: Ammonia capture[J]. Plant and Soil, 2012, 350(1/2): 35-42.
[35] Asada T, Ishihara S, Yamane T, et al. Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases[J]. Journal of Health Science, 2002, 48(6): 473-479.
[36] Doydora S A, Cabrera M L, Das K C, et al. Release of nitrogen and phosphorus from poultry litter amended with acidified biochar[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1 491-1 502.
[37] Taghizadeh Toosi A, Clough T J, Sherlock R R, et al. Biochar adsorbed ammonia is bioavailable[J]. Plant and Soil, 2012, 350(1/2): 57-69.
[38] Chen C R, PhillipsI R, Condron L M, et al. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand[J]. Plant and Soil, 2012, 367(1/2): 301-312.
[39] Yao Y, Gao B, Zhang M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2013, 89:1 467-1 471.
[40] Hale S E, Alling V, Martinsen V, et al. The sorption and desorption of phosphate ammonium and nitrate in cacao shell and corn cob biochars[J].Chemosphere, 2013, 91:1 612-1 619.
[41] Sarkhot D V, Berhe A A, Ghezzehei T A, et al. Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics[J]. Journal of Environmental Quality, 2012, 41(4): 1 107-1 114.
[42] Li Jihui, Lü Guohua, Bai Wenbo, et al. Effect of modified biochar on soil nitrate nitrogen and available phosphorus leaching[J]. Chinese Journal of Agrometeorology, 2012, 33(2):220-225.
[李际会, 吕国华, 白文波, 等. 改性生物炭的吸附作用及其对土壤硝态氮和有效磷淋失的影响[J].中国农业气象, 2012, 33(2): 220-225.]
[43] Chintala R, Mollinedo J, Schumacher T E, et al. Nitrate sorption and desorption in biochars from fast pyrolysis[J]. Microporous and Mesoporous Materials, 2013, 179:250-257.
[44] Mukherjee A, Zimmerman A, Harris W, et al. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163(3): 247-255.
[45] Zhang W, Li Z, Zhang Q, et al. Impacts of biochar and nitrogen fertilizer on spinach yield and tissue nitrate content from a pot experiment[J].Journal of Agro-Environment Science, 2011, 10:7.
[46] Kameyama K, Miyamoto T, Shiono T, et al. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil[J]. Journal of Environmental Quality, 2012, 41(4): 1 131-1 137.
[47] Dempster D N, Jones D L, Murphy D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil[J]. Soil Research, 2012, 50(3): 216-221.
[48] Sika M, Hardie A. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil[J]. European Journal of Soil Science, 2013, doi:10.1111/ejss.12082.
[49] Nelissen V, Rütting T, Huygens D, et al. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil[J]. Soil Biology and Biochemistry, 2012, 55: 20-27.
[50] DeLuca T H, Mac Kenziea M D, Gundale M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 2006, 70(2): 448-453.
[51] Ball P N, MacKenzie M D, DeLuca T H, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils[J]. Journal of Environmental Quality, 2010, 39(4): 1 243-1 253.
[52] Nelson N O, Agudelo S C, Yuan W, et al. Nitrogen and phosphorus availability in biochar-amended soils[J]. Soil Science, 2011, 176(5): 218-226.
[53] Streubela J D, Collins H P, Garcia-Perez M, et al. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Science Society of America Journal, 2011, 75(4): 1 402-1 413.
[54] Angst T E, Sohi S P. Establishing release dynamics for plant nutrients from biochar[J]. GCB Bioenergy, 2012, 5(2):221-226.
[55] Enders A, Hanley K, Whitman T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 2012, 114: 644-653.
[56] Wei L, Xu G, Shao H, et al. Regulating environmental factors of nutrients release from wheat straw biochar for sustainable agriculture[J]. Clean-Soil, Air, Water, 2013, 41: 697-701.
[57] Yao Y, Gao B, Zhang M, et al. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential[J]. Bioresource Technology, 2013, 89:1 467-1 471.
[58] Yao Y, Gao B, Inyang M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 2011, 190(1): 501-507.
[59] Morales M M, Comerford N, GuerriniI A, et al. Sorption and desorption of phosphate on biochar and biochar-soil mixtures[J]. Soil Use and Management, 2013, 29:306-314.
[60] Parvage M M, Ulén B, Eriksson J, et al. Phosphorus availability in soils amended with wheat residue char[J]. Biology and Fertility of Soils, 2013, 49(2): 245-250.
[61] Makoto K, Shibata H, Kim Y S, et al. Contribution of charcoal to short-term nutrient dynamics after surface fire in the humus layer of a dwarf bamboo-dominated forest[J]. Biology and Fertility of Soils, 2012, 48(5): 569-577.
[62] Deluca T H, MacKenzie M D, Gundale M J, et al. Biochar effects on soil nutrient transformations[M]//Biochar for Environmental Management: Science and Technology. London, UK: Earthscan, 2009: 251-270.
[63] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2):9-20.
[64] Keech O, Carcaillet C, Nilsson M C, et al. Adsorption of allelopathic compounds by wood-derived charcoal: The role of wood porosity[J].Plant and Soil, 2005, 272(1/2): 291-300.
[65] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J].Soil Research, 2008, 45(8): 629-634.
[66] Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J].Soil Use and Management, 2011, 27(2): 205-212.
[67] Noguera D, Rondón M, Laossi K R, et al. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils[J].Soil Biology and Biochemistry, 2010, 42(7): 1 017-1 027.
[68] Zhang A, Cui L, Pan G, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture, Ecosystems & Environment, 2010, 139(4): 469-475.
[69] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J].Plant and Soil, 2010, 333(1/2): 117-128.
[70] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield[J].Field Crops Research, 2009, 111(1): 81-84.
[71] Gundale M J, DeLuca T H. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem[J].Biology and Fertility of Soils, 2007, 43(3): 303-311.
[72] Major J, Steiner C, Downie A, et al. Biochar Effects on Nutrient Leaching. Biochar for Environmental Management: Science and Technology[M]. London:Earthscan, 2009: 271-282.
[73] Collison M, Collison L, Sakrabani D R, et al. Biochar and Carbon Sequestration: A Regional Perspective[R]. UEA, Norwich:Low Carbon Innovation Centre, 2009.
[74] Ayuso M, Pascual J A, García C, et al. Evaluation of urban wastes for agricultural use[J].Soil Science and Plant Nutrition, 1996, 42(1): 105-111.
[75] Painter T J. Carbohydrate polymers in food preservation: An integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs[J].Carbohydrate Polymers, 1998, 36(4): 335-347.
[76] Hospido A, Moreira T, Martín M, et al. Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: Anaerobic digestion versus thermal processes[J].The International Journal of Life Cycle Assessment, 2005, 10(5): 336-345.
[77] Chan K Y, Xu Z. Biochar: Nutrient properties and their enhancement[J].Biochar for Environmental Management: Science and Technology, 2009: 67-84.
[78] Bridle T, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis[J].Water Science & Technology, 2004, 50(9): 169-175.
[79] Muralidhara H, Maggin B, Phipps Jr H, et al. Conversion of tannery waste to useful products[J].Resources and Conservation, 1982, 8(1): 43-59.
[80] Mchenry M P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk[J]. Agriculture, Ecosystems & Environment, 2009, 129(1): 1-7.
[81] Ledesma E B, Marsh N D, Sandrowitz A K, et al. Global kinetic rate parameters for the formation of polycyclic aromatic hydrocarbons from the pyrolyis of catechol, a model compound representative of solid fuel moieties[J].Energy & Fuels, 2002, 16(6): 1 331-1 336.
[82] Garcia-Perez M, Metcalf J. The Formation of Polyaromatic Hydrocarbons and Dioxins during Pyrolysis: A Review of the Literature with Descriptions of Biomass Composition, Fast Pyrolysis Technologies and Thermochemical Reactions[D]. Washington:Washington State University, 2008.
[83] Pakdel H, Roy C. Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood[J].Energy & Fuels, 1991, 5(3): 427-436.
[84] Fernandes M B, Brooks P. Characterization of carbonaceous combustion residues: II. Nonpolar organic compounds[J].Chemosphere, 2003, 53(5): 447-458.
[85] Brown M A, Levine M D, Short W, et al. Scenarios for a clean energy future[J]. Energy Policy, 2001, 29(14): 1 179-1 196.
[86] Wilcke W. Synopsis Polycyclic Aromatic Hydrocarbons (PAHs) in soil—A review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(3): 229-248.
[1] 张兵, 唐书恒, 郗兆栋, 蔺东林, 叶亚培. 湘西北五峰—龙马溪组层序地层特征及有机质富集探讨——以 XY-3井为例[J]. 地球科学进展, 2021, 36(10): 1026-1038.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[5] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[6] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[7] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[8] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[9] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[10] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[11] 王军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[12] 沈传波, 刘泽阳, 肖凡, 胡迪, 杜嘉祎. 石油系统Re-Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
[13] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[14] 李启权,王昌全,岳天祥,张文江,余勇. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2): 175-184.
[15] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
阅读次数
全文


摘要