地球科学进展 ›› 2014, Vol. 29 ›› Issue (1): 56 -67. doi: 1001-8166(2014)01-0056-12

上一篇    下一篇

气候模式中关键陆面植被参量遥感估算的研究进展
陈洪萍 1, 2( ), 贾根锁 1( ), 冯锦明 1, 董燕生 3   
  1. 1. 中国科学院大气物理研究所东亚区域气候—环境重点实验室, 北京 100029
    2. 中国科学院大学, 北京 100049
    3. 北京农业信息技术研究中心, 北京 100097
  • 收稿日期:2013-06-18 修回日期:2013-12-05 出版日期:2014-03-01
  • 基金资助:
    国家重点基础研究发展计划项目“全球典型干旱半干旱地区年代尺度气候变化的机理及其影响研究”(编号:2012CB956202);中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”项目九“过去百年气候增暖及成因”第二课题“近代变暖中的城市化效应”(编号:XDA05090200) 资助.;在成文过程中, 参考了2010—2012年北京大学《定量遥感》研究生精品课程班, 北京师范大学第1和第2届《陆表卫星遥感数据反演理论与方法暑期讲习班》部分老师的相关讲义, 这些老师分别是郭华东、刘树华、柳钦火、刘强、肖志强、阎广建。在此一并致谢。

Remote Sensing Estimates of Key Land Surface Vegetation Variables Used in Climate Model: A Review

Hongping Chen 1( ), Gensuo Jia 1( ), Jinming Feng 1, Yansheng Dong 3   

  1. 1. Key Laboratory of Regional Climate-Environment Research for Temperate East Asia (RCE-TEA), Chinese Academy of Sciences, Beijing 100029, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
  • Received:2013-06-18 Revised:2013-12-05 Online:2014-03-01 Published:2014-01-10

卫星遥感资料对于改善气候模式的强迫场, 改进相关物理参数, 提高数值模式模拟的准确性具有重要作用。目前, 全球已经积累了多年的卫星遥感资料, 并且已有多种陆面参量遥感产品。然而, 卫星遥感资料在气候模式中的应用还非常有限。充分利用卫星遥感资料, 对于提高气候模式模拟能力具有重要作用。选择植被覆盖度(Fractional Vegetation Cover, FVC)、叶面积指数(Leaf Area Index, LAI) 和地表反照率(Albedo)3个关键陆面参量的遥感估算方法进行评述, 并分析了陆面参量真实性检验的尺度转换问题, 还以WRF (Weather Research and Forecasting model)为例, 阐述了遥感估算的陆面参量应用于模式的表达方式。最后讨论了关键陆面参量遥感估算的不确定性和遥感参量应用于气候模式的尺度匹配等亟待解决的问题, 并对这些问题的未来改进方向进行了展望。

Satellite remote sensing data play an important role in the improvement of climate models forcing field, relevant physical parameters and simulation accuracy. At present, there are many years of satellite remote sensing data and a variety of products about land surface attributes. However, the application of satellite remote sensing data to climate models is still very limited. Fully using satellite remote sensing data is important to improving the simulation ability. In the paper, remote sensing estimates methods of three key land surface parameters including Fractional Vegetation Coverage(FVC), Leaf Area Index(LAI)and surface albedo(Albedo)is reviewed and upor downscaling land surface variables in validation process is analyzed. Secondly, taking WRF(Weather Research and Forecasting)model as an example, three parameters in climate model are described. Finally, the key problems of using remote sensing data in climate models are discussed, which comprise the uncertainties and scales of remote sensing estimation parameters and the future direction is prospected.

中图分类号: 

图1 遥感产品真实性检验的升尺度框架
Fig.1 The upscale frame of validatingremote sensing products
表1 不同遥感估算方法的比较
Table 1 Comparison of different remote sensing estimation methods
图2 MODIS LAI 遥感产品真实性验证结果
Fig.2 The validation result of MODIS LAI product
[1] Dickinson R E, Henderson-Sellers A. Modeling tropical deforestation: A study of GCM land-surface parameterizations[J]. Quarterly Journal of Royal Meteorological Society, 1998, 114: 439-462.
[2] Xue Y, Shukla J. The influence of land surface properties on Sahel climate. Part I: Desertification[J]. Journal of Climate, 1993, 6: 2 232-2 245.
[3] Betts A K, Ball J H, Beljaars A C M, et al. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives[J]. Journal of Geophysical Research, 1996, 101: 7 209-7 225.
[4] Xue Y, Juang H M H, Li W, et al. Role of land surface processes in monsoon development: East Asia and West Africa[J]. Journal of Geophysical Research, 2004, 109: D03105, doi:10.1029/2003JD003556.
[5] Xue Y, Sales F De, Li W, et al. Role of land surface processes in South American monsoon development[J]. Journal of Climate, 2006, 19: 741-762.
[6] Knyazikhin Y, Martonchik J V, Myneni R B, et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data[J]. Journal of Geophysical Research, 1998, 103: 32 257-32 274.
[7] Knyazikhin Y, Martonchik J V, Diner D J, et al. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data[J]. Journal of Geophysical Research, 1998, 103: 32 239-32 256.
[8] Hu J, Tan B, Shabanov N, et al. Performance of the MISR LAI and FPAR algorithm: A case study in Africa[J]. Remote Sensing of Environment, 2003, 88: 324-340.
[9] Hu J, Su Y, Tan B, et al. Analysis of the MISR LAI/FPAR product for spatial and temporal coverage, accuracy and consistency[J]. Remote Sensing of Environment, 2007, 107: 334-347.
[10] Gobron N, Pinty B, Verstraete M M, et al. Advanced vegetation indices optimized for up-coming sensors: Design, performance and applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38: 2 489-2 505.
[11] Gobron N, Pinty B, Aussedat O, et al. Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using Joint Research Center products derived from SeaWiFS against ground-based estimations[J]. Journal of Geophysical Research, 2006, 111: D13110, doi:12.1029/2005JD006511.
[12] Gobron N, Pinty B, Aussedat O, et al. Uncertainty estimates for the FAPAR operational products derived from MERIS—Impact of top-of-atmosphere radiance uncertainties and validation with field data[J]. Remote Sensing of Environment, 2008, 112: 1 871-1 883, doi:10.1016/j.rse.2007.09.011.
[13] Roujean J L, Lacaze R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation[J]. Journal of Geophysical Research, 2002, 107: 10 129-10 145.
[14] Baret F, Hagolle O, Geiger B, et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1: Principles of the algorithm[J]. Remote Sensing of Environment, 2007, 110: 275-286.
[15] Bacour C, Baret F, Beal D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation[J]. Remote Sensing of Environment, 2006, 105: 313-325.
[16] Schaaf C, Gao F, Strahler A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83: 135-148.
[17] Martonchik J, Pinty B, Verstraete M. Note on an improved model of surface BRDF-atmospheric coupled radiation[J].IEEE Transactions on Geoscience and Remote Sensing, 2002, 40:1 637-1 639.
[18] Bacour C, Bréon F. Variability of land surface BRDFs[J]. Remote Sensing of Environment, 2005, 98: 80-95.
[19] Lawrence P J, Chase T N. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)[J]. Journal of Geophysical Research, 2007, 112: G01023, doi:10.1029/2006JG000168.
[20] Fang H, Liang S, Townshend J, et al. Spatially and temporally continuous LAI data sets based on a new filtering method: Examples from North America[J]. Remote Sensing of Environment, 2008, 112: 623-635.
[21] Borak J S, Jasinski M F. Effective interpolation of incomplete satellite derived leaf-area index time series for the continental United States[J]. Agricultural and Forest Meteorology, 2009, 149: 320-332.
[22] Fu C. Potential impacts of human-induced land cover change on East Asia monsoon[J]. Global and Planetary Change, 2003, 37(3/4): 219-229.
[23] Foley J, DeFries R, Asner G, et al. Global consequences of land use[J]. Science, 2005, 309: 570-574.
[24] Bonan G. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320: 1 444-1 449.
[25] Mahmood R, Pielke R, Hubbard K, et al. Impacts of land use/land cover change on climate and future research priorities[J]. Bulletin of the American Meteorological Society, 2010, 91: 37-46.
[26] Copeland J H, Pielke R A, Kittel T G F. Potential climatic impacts of vegetation change: A regional modeling study[J]. Journal of Geophysical Research, 1996, 101: 7 409-7 418.
[27] Crawford T M, Stensrud D J, Mora F, et al. Value of incorporating satellite-derived land cover data in mm5/place for simulating surface temperatures[J]. Journal of Hydrometeorology, 2001, 2: 453-468.
[28] Chen J M, Black T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15: 421-429.
[29] Justice C O, Vermote E, Townshend J R, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1 228-1 249.
[30] Chase T N, Pielke R A, Kittel T G F, et al. Sensitivity of a general circulation model to global changes in leaf area index[J]. Journal of Geophysical Research, 1996, 101: 7 393-7 408.
[31] Lu L, Shuttleworth W J. Incorporating NDVI-derived LAI into the climate version of RAMS and its impact on regional climate[J]. Journal of Hydrometeorology, 2002, 3: 347-362.
[32] Bounoua L, Collatz G J, Los S O, et al. Sensitivity of climate to changes in NDVI[J]. Journal of Climate, 2000, 13: 2 277-2 292.
[33] Buermann W, Dong J, Zeng X, et al. Evaluation of the utility of satellite-based leaf area index data for climate simulation[J]. Journal of Climate, 2001, 14: 3 536-3 550.
[34] Guillevic P, Koster R D, Suarez M J, et al. Influence of the interannual variability of vegetation on the surface energy balance—A global sensitivity study[J]. Journal of Hydrometeorology, 2002, 3: 617-629.
[35] Van den Hurk B J, Viterbo P, Los S O. Impact of leaf area index seasonality on the annual land surface evaporation in a general circulation model[J]. Journal of Geophysical Research, 2003, 108: 4 191.
[36] Tian Y, Dickinson R E, Zhou L, et al. Land boundary conditions from MODIS data and consequences for the albedo of a climate model[J]. Geophysical Research Letters, 2004, 31: L05504, doi:10.1029/2003GL019104.
[37] Tian Y, Dickinson R E, Zhou L, et al. Impact of new land boundary conditions from Moderate Resolution Imaging Spectroradiometer (MODIS) data on the climatology of land surface variables[J]. Journal of Geophysical Research, 2004, 109: D20115, doi:10.1029/2003JD004499.
[38] Kang H S, Xue Y K, Collatz G J. Impact assessment of satellite-derived leaf area index datasets using a general circulation model[J]. Journal of Climate, 2007, 20: 993-1 015.
[39] Dickinson R E. Land surface processes and climate surface albedos and energy balance[J]. Advances in Geophysics, 1983, 25: 305-303.
[40] Frida A-M B, Henning R, Robert J C, et al. 22 views of the global albedo—Comparison between 20 GCMs and two satellites[J]. Tellus A, 2006, 58: 320-330.
[41] Alton P. A simple retrieval of ground albedo and vegetation absorptance from MODIS satellite data for parameterisation of global land-surface models[J]. Agricultural and Forest Meteorology, 2009, 149: 1 769-1 775.
[42] Hollinger D Y, Ollinger S V, Richardson A D, et al. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration[J]. Global Change Biology, 2009, 16: 696-710.
[43] Charney J G, Quirk W J, Chow S H, et al. A comparative study of the effects of albedo change on drought in semi-arid regions[J]. Journal of Atmospheric Science, 1977, 34: 1 366-1 385.
[44] Wang Z, Zeng X, Barlage M, et al. Using MODIS BRDF and albedo data to evaluate global model land surface albedo[J].Journal of Hydrometeorology, 2004, 5(1): 3-14.
[45] Shi Xiaokang, Wen Jun, Tian Hui, et al. Application of MODIS albedo data in the simulation of land surface and rainfall processes over the Yellow River water source region[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(6):1 187-1 200.
[史小康, 文军, 田辉, 等. MODIS 反照率产品在模拟黄河源区陆面过程和降水中的应用[J]. 大气科学, 2009, 33(6):1 187-1 200.]
[46] Zhang Xuezhen, Zheng Jingyun, He Fanneng, et al. Application of MODIS BRDF/Albedo dataset in the regional temperature simulation of China[J]. Acta Geographica Sinca, 2011, 66(3): 356-366.
[张学珍, 郑景云, 何凡能, 等. MODIS BRDF/Albedo 数据在中国温度模拟中的应用[J]. 地理学报, 2011, 66(3):356-366.]
[47] Zeng X B, Dickinson R E, Walker A, et al. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling[J]. Journal of Applied Meteorology, 2000, 39: 826-839.
[48] Gao Yanhong, Liu Wei, Ran Youhua, et al. Vegetation coverage fraction calculation and the mesoscale modeling in Heihe River Basin[J]. Plateau Meteorology, 2007, 26(2):270-277.
[高艳红, 刘伟, 冉有华, 等.黑河流域植被覆盖度计算及其影响的中尺度模拟[J].高原气象, 2007, 26(2): 270-277.]
[49] James K A, Stensrud D J, Yossouf N. Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models[J]. Weather Forecast, 2009, 24: 187-210.
[50] Zhang Jinghui, Wen Jun, Zhang Tangtang, et al. Numerical simulation of influence of fractional vegetation cover change in the source water region of Yellow River on regional climate[J]. Plateau Meteorology, 2011, 30(4): 989-995.
[张静辉, 文军, 张堂堂, 等. 黄河源区植被覆盖度对区域气候影响的数值模拟[J].高原气象, 2011, 30(4):989-995.]
[51] Kumara P, Bhattacharyab B K, Pala P K. Impact of vegetation fraction from Indian geostationary satellite on short-range weather forecast[J]. Agricultural and Forest Meteorology, 2013, 168: 82-92.
[52] Qi L, Kerr Y, Moran M, et al. Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region[J]. Remote Sensing of Environment, 2000, 73: 18-30.
[53] Xiao X, He L, Salas W, et al. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields[J]. International Journal of Remote Sensing, 2002, 23(18): 3 595-3 604.
[54] Colombo R, Bellingeri D, Fasolini D, et al. Retrieval of leaf area index in different vegetation types using high resolution satellite data[J]. Remote Sensing of Environment, 2003, 86: 120-131.
[55] Anderson A, Neale C, Li F, et al. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery[J]. Remote Sensing of Environment, 2004, 92: 447-464.
[56] Tan B, Hu J, Zhang P, et al. Validation of moderate resolution imaging spectroradiometer leaf area index product in croplands of Alpilles, France[J]. Journal of Geophysical Research, 2005, 110: D01107, doi:10.1029/2004JD004860.
[57] Delalicux S, Somers B, Hereijgers S, et al. A near-infrared narrow-waveband ratio to determine leaf area index in orchards[J]. Remote Sensing of Environment, 2008, 112: 3 762-3 772.
[58] Maire G, Marsden C, Verhoef W, et al. Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations[J]. Remote Sensing of Environment, 2011, 115: 586-599.
[59] Li X, Strahler A. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy[J]. IEEE Transaction on Geoscience and Remote Sensing, 1986, 24: 906-919.
[60] Li X, Strahler A. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of grown shape and mutual shadowing[J]. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(2): 276-292.
[61] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling, the SAIL model[J]. Remote Sensing of Environment, 1984, 16: 125-141.
[62] Jacquemoud S, Baret F. PROSPECT: A model of leaf optical properties[J]. Remote Sensing of Environment, 1990, 34: 75-91.
[63] Yang W, Huang D, Tan B, et al. Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1 829-1 842.
[64] Houborg R, Boegh E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data[J]. Remote Sensing of Environment, 2008, 112: 186-202.
[65] Ganguly S, Nemani R, Zhang G, et al. Generating global leaf area index from landsat: Algorithm formulation and demonstration[J]. Remote Sensing of Environment, 2012, 122:185-202.
[66] Fang H, Liang S, Kuusk A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment, 2003, 85: 257-270.
[67] Moroni M, Colombo R, Panigada C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations[J]. Remote Sensing of Environment, 2004, 92: 195-206.
[68] Danson F M, Rowland C S, Baret F. Training a neural network with a canopy reflectance model to estimate crop leaf area index[J]. International Journal of Remote Sensing, 2003, 24(3): 4 891-4 905.
[69] Fang H, Liang S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies[J]. Remote Sensing of Environment, 2005, 94: 405-424.
[70] Walthall C, Dulaney W, Anderson M, et al. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery[J]. Remote sensing of Environment, 2004, 92: 465-474.
[71] Verger A, Baret F, Weiss M. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products[J]. Remote Sensing of Environment, 2008, 112: 2 789-2 803.
[72] Verger A, Baret F, Weiss M. A multisensor fusion approach to improve LAI time series[J]. Remote Sensing of Environment, 2011, 115(10): 2 460-2 470.
[73] Wang Dongwei, Wang Jindi, Liang Shunlin. Retrieving crop leaf area index by assimilation of MODIS data into crop growth model[J]. Science in China (Series D), 2010, 40(1): 73-83.
[王东伟, 王锦地, 梁顺林. 作物生长模型同化MODIS反射率方法提取作物叶面积指数[J]. 中国科学:D辑, 2010, 40(1): 73-83.]
[74] Xiao Z, Liang S, Wang J, et al. A temporally integrated inversion method for estimating leaf area index from MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2 536-2 535.
[75] Xiao Z, Liang S, Wang J, et al. Real-time retrieval of leaf area index from MODIS time series data[J]. Remote Sensing of Environment, 2011, 115: 97-106.
[76] Russell M J, Nunez M, Chladil M A, et al. Conversion of nadir, narrow-band reflectance in red and near-infrared channels to hemispherical surface albedo[J]. Remote Sensing of Environment, 1997, 61: 16-23.
[77] Liang S, Shuey C, Russ A. Narrowband to broadband conversions of land surface albedo: II. Validation[J]. Remote Sensing of Environment, 2002, 84: 25-41.
[78] Susaki J, Yasuoka Y, Kajiwara K, et al. Validation of MODIS albedo products of paddy fields in Japan[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 206-217.
[79] Jakubauskas M, Kindscher K, Fraser A, et al. Close-range remote sensing of aquatic macrophyte vegetation cover[J]. International Journal of Remote Sensing, 2000, 21(18): 3 533-3 538.
[80] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80: 76-87.
[81] Patel N K, Saxena R K, Shiwalkar A J. Study of fractional vegetation cover using high spectral resolution data[J]. Journal of Indian Society Remote Sensing, 2007, 35(1): 73-79.
[82] Theseira M A, Thomas G, Sannier C A D. An evaluation of spectral mixture modeling applied to a semi-arid environment[J].International Journal of Remote Sensing, 2002, 23: 687-700.
[83] Okin G S. Relative spectral mixture analysis—A multitemporal index of total vegetation cover[J]. Remote Sensing of Environment, 2007, 106: 467-479.
[84] Guerschman J P, Hill M J, Renzullo L J, et al. Estimating fractional cover of photosynthetic vegetation, nonphotosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors[J]. Remote Sensing of Environment, 2009, 113: 928-945.
[85] Boyd D S, Foody G M, Ripple W J. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing[J]. Applied Geography, 2002, 22: 375-392.
[86] Van de Voorde T, Vlaeminck J, Canters F. Comparing different approaches for mapping urban vegetation cover from landsat ETM+ data: A case study on Brussels[J]. Sensors, 2008, 8:3 880-3 902.
[87] Jiapaer G, Chen X, Bao A. A comparison of methods for estimating fractional vegetation cover in arid regions[J]. Agricultural and Forest Meteorology, 2011, 151:1 698-1 710.
[88] Garrigues S, Lacaze R, Baret F, et al. Validation and intercomparison of global leaf area index products derived from remote sensing data[J]. Journal of Geophysical Research, 2008, 113:G02028, doi: 10.1029/2007JG000635.
[89] Fang H, Wei S, Jiang C, et al. Theoretical uncertainty analysis of global MODIS, CYCLOPES and GLOBCARBON LAI products using a triple collocation method[J]. Remote Sensing of Environment, 2012, 124: 610-621.
[90] Morisette J, Baret F, Privette J L, et al. Validation of global moderate resolution LAI products: A framework proposed within the CEOS land product validation subgroup[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:1 804-1 817.
[91] Yuan H, Dai Y, Xiao Z, et al. Reprocessing the MODIS leaf area index products for land surface and climate modeling[J]. Remote Sensing of Environment, 2011, 115: 1 171-1 187.
[92] Leung L R, Qian Y. Atmospheric rivers induced heavy precipitation and flooding in the western U.S. Simulated by the WRF regional climate model[J]. Geophysical Research Letters, 2009, 36: L03820, doi:10.1029/2008GL036445.
[93] Chen F, Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part II: Model validation[J]. Monthly Weather Review, 2001, 129: 587-604.
[94] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998, 19(8):1 533-1 543.
[95] Gao H, Jia G. Assessing disagreement and tolerance of misclassification of satellite-derived land cover products used in WRF model applications[J]. Advances in Atmospheric Sciences, 2013, 35(1): 125-141.
[96] Jun W, Feng J, Yan Z, et al. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China[J]. Journal of Geophysical Research, 2012, 117: D21103, doi:10.1029/2012JD018226.
[97] Fang H, Jiang C, Li W, et al. Characterization and intercomparison of global moderate resolution Leaf Area Index (LAI) products: Analysis of climatologies and theoretical uncertainties[J]. Journal of Geophysical Research Biogeoscience, 2013, 118: 1-20.
[98] Pinty B, Andredakis M, Clerici T, et al. Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties[J]. Journal of Geophysical Research, 2011, 116: D09105, doi:10.1029/2010JD015372.
[99] Pisek J, Chen M, Alikas K, et al. Impacts of including forest understory brightness and foliage clumping information from multiangular measurements on leaf area index mapping over North American[J]. Journal of Geophysical Research, 2010, 115: G03023, doi:10.1029/2009JG001138.
100 Weiss M, Baret M, Garrigues S, et al. LAI and fPAR CYCLOPES global products derived from VEGETATION. Part 2: Validation and comparison with MODIS collection 4 products[J]. Remote Sensing Environment, 2007, 110(3):317-331.
101 Moody E, King M, Platnick S, et al. Spatially complete global spectral surface Albedos: Value-added datasets derived from terra MODIS land products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1): 144-158.
102 Fang H, Liang S, Kim H, et al. Developing a spatially continuous 1 km surface albedo data set over North America from terra MODIS products[J]. Journal of Geophysical Research, 2007, 112: D20206, doi:10.1029/2006JD008377.
103 Parajka J, Bloschl G. Spatio-temporal combination of MODIS images-potential for snow cover mapping[J]. Water Resources Research, 2008, 44(3), doi: 10.1029/2007WR006204.
104 Zheng G, Moskal L M. Retrieving Leaf Area Index (LAI) using remote sensing: Theories, methods and sensors[J]. Sensors, 2009, 9(4): 2 719-2 745.
105 Liu Huizhi, Tu Gang, Dong Wenjie. Three-year changes of surface albedo of degraded grassland and cropland surfaces in a semiarid area[J]. Chinese Science Bulletin, 2008, 53(8): 1 246-1 254.
106 Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498, doi: 10.11867/j.issn.1001-8166.2012.05.0481.
[李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498, doi:10.11867/j.issn.1001-8166.2012.05.0481.]
107 Feng Qi, Su Yonghong, Si Jianhua, et al. Ecohydrological transect survey of Heihe River Basin[J]. Advances in Earth Science, 2013, 28(2): 187-196, doi:10.11867/j.issn.1001-8166.2013.02.0187.
[冯起, 苏永红, 司建华, 等. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196, doi: 10.11867/j.issn.1001-8166.2013.02.0187.]
[1] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[2] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
[3] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[4] 牟龙江,赵进平. 格陵兰海海冰外缘线变化特征分析[J]. 地球科学进展, 2013, 28(6): 709-717.
[5] 王连喜, 刘静, 李琪, 钱蕊. 气候变化对宁夏水稻的影响及适应性研究[J]. 地球科学进展, 2013, 28(11): 1248-1256.
[6] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.
[7] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[8] 王林,陈文. 误差订正空间分解法在中国的应用[J]. 地球科学进展, 2013, 28(10): 1144-1153.
[9] 崔月菊,杜建国,陈志,李静,谢超,周晓成,刘雷. 2010年玉树Ms 7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794.
[10] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[11] 任建奇,严卫,叶晶,韩丁. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1051-1060.
[12] 杨清华,张占海,刘骥平,吴辉碇,张林. 海冰反照率参数化方案的研究回顾[J]. 地球科学进展, 2010, 25(1): 14-21.
[13] 王澄海,吴永萍,崔 洋. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
[14] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[15] 付红丽,赵进平. 白令海冰间湖的数值模拟及影响模拟准确度的关键因素[J]. 地球科学进展, 2009, 24(5): 538-548.
阅读次数
全文


摘要