地球科学进展 ›› 2014, Vol. 29 ›› Issue (1): 42 -55. doi: 1001-8166(2014)01-0042-14

上一篇    下一篇

北欧海深层水的研究进展
邵秋丽( ), 赵进平   
  1. 中国海洋大学物理海洋重点实验室, 山东青岛, 266100
  • 收稿日期:2013-06-18 修回日期:2013-12-05 出版日期:2014-03-01
  • 基金资助:
    国家自然科学基金重点项目“北极海冰与上层海洋环流耦合变化及其气候效应”(编号:41330960);南北极环境综合考察与评估专项课题“北冰洋物理海洋与气象环境变化评价”(编号:CHINARE2013-04-03-01)资助.

On the deep water of the Nordic Seas

Qiuli Shao( ), Jinping Zhao   

  1. Key Laboractory of Physical Oceanography, College of Physical and Envionmental Oceanography , Ocean university of China, Qingdao, Shandong 266100
  • Received:2013-06-18 Revised:2013-12-05 Online:2014-03-01 Published:2014-01-10

北欧海作为联系北大西洋和北冰洋的纽带, 在全球气候系统中具有重要作用。受冷却等作用的影响, 北欧海上层海水下沉形成中层水和深层水。该部分海水向南输运, 以溢流的形式进入北大西洋深层, 是在全球大洋输送带中具有关键性作用的北大西洋深层水的重要来源。通过综述国内外关于北欧海深层水的研究历史和研究现状, 剖析了北欧海深层水形成的重要物理过程, 分析了影响北欧海深层水的可能因素和物理过程、北欧海深层水的输运过程以及北欧海深层水近年来的变化趋势, 为开展相关研究提供参考。

As a connection region between North Atlantic and Arctic Oceans, the Nordic Sea plays a critical role in global climate system. In the Nordic Seas, surface water converts into intermediate water and deep water after cooling and other effects. These waters transport southward, and enter into North Atlantic as a form of overflow, therefore, they are the main source of the North Atlantic Deep Water(NADW), which play a key role in global ocean conveyor. The causes and processes of the deep water formation in the Nordic Seas are still uncertain. Based on a review of current and historical research results of the deep water in the Nordic Seas, the most important process for deep water formation convection is addressed. Factors and physical processes that may have impact on deep water formation are summarized. The transport of deep water in the Nordic Seas is summed up. Multiyear variation of the deep water is described with the aim of giving some instructions and research directions to the readers.

中图分类号: 

图1 北欧海地形图 1.Boreas海盆;2.格陵兰海盆;3.Knipovich海脊;4.扬马延断裂带;5.莫恩海脊;6.Kolbeinsey海脊;7.冰岛海台;8.罗弗敦海盆; 9.挪威海盆;10.Vring海台;11.法罗群岛
Fig.1 The bathymetric features of the Nordic Seas 1.Boreas Basin; 2.Greenland Basin; 3.Knipovich Ridge; 4.Jan Mayen Fracture Zone; 5.Mohn Rigde; 6.Kolbeinsey Ridge; 7.Iceland Plateau;8.Lofoten Basin; 9.Norwegian Basin; 10.Vring Plateau; 11.Faroe Islands
图2 北欧海上层流场示意图 [ 17 ] 红色实线表示来自大西洋的暖流, 黑色虚线表示来自北冰洋的寒流。图中主要流动分别表示东格陵兰流(EGC)、扬马延流(JMC)、北大西洋流(NAC)、挪威大西洋流(NWAC)、西斯匹次卑尔根流(WSC)以及大西洋回流(RAC)
Fig.2 Schematic diagram of upperlayer circulation in Nordic Seas [ 17 ] Red solid lines represent Atlantic Water. Black broken lines represent Arctic and Polar waters.EGC.East Greenland Current; JMC.Jan Mayen Current;NAC.North Atlantic Current; NWAC.Norwegian Atlantic Current; WSC.West Spitsbergen; RAC.Return Atlantic Current
图3 北欧海两大主要水体来源示意图 [ 26 ] EGC.表示东格陵兰流; WSC.表示西斯匹次卑尔根流
Fig.3 Sketch of two main sources of water in the Nordic Seas [ 26 ] EGC.East Greenland Current; WSC.West Spitsbergen Current
图4 格陵兰海中央2 000 m以下的平均温度 [ 109 ]
Fig. 4 Time series of the mean temperature below 2 000 m in the central Greenland Sea [ 109 ]
[1] Mauritzen C. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme[J]. Deep Sea Research I, 1996, 43(6): 769-806.
[2] Mauritzen C. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 2: An inverse model[J]. Deep Sea Research I, 1996, 43(6): 807-835.
[3] Aagaard K, Swift J, Carmack E. Thermohaline circulation in the Arctic Mediterranean Seas[J]. Journal of Geophysical Research, 1985, 90(C3): 4 833-4 846.
[4] Furevik T, Nilsen J. Large-scale atmospheric circulation variability and its impacts on the Nordic Seas Ocean climate—A review[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysical Union, 2005: 105-136.
[5] Aagaard K, Coachman L K. The East Greenland current north of Denmark Strait: Part I[J]. Arctic, 1968, 21(3): 181-200.
[6] Aagaard K, Coachman L K. The East Greenland current north of Denmark Strait: Part II[J]. Arctic, 1968, 21(3): 267-290.
[7] Hansen B, sterhus S. North Atlantic-Nordic Seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109-208.
[8] Meincke J, Rudels B, Friedrich H. The Arctic Ocean-Nordic Seas thermohaline system[J]. ICES Journal of Marine Science, 1997, 54(3): 283-299.
[9] Eldevik T, Straneo F, Sando A B, et al. Pathways and export of Greenland Sea water[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysicd Union, 2005: 89-104.
[10] Voet G, Quadfasel D, Mork K, et al. The mid-depth circulation of the Nordic Seas derived from profiling float observations[J]. Tellus A, 2010, 62(4): 516-529.
[11] Turrell W R, Slesser G, Adams R D, et al. Decadal variability in the composition of Faroe Shetland Channel bottom water[J]. Deep Sea Research I, 1999, 46(1): 1-25.
[12] Fogelqvist E, Blindheim J, Tanhua T, et al. Greenland-Scotland overflow studied by hydro-chemical multivariate analysis[J]. Deep Sea Research I, 2003, 50(1): 73-102.
[13] Drange H, Dokken T, Furevik T, et al. The Nordic Seas: An overview[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysical Union, 2005: 1-10.
[14] Poulain P M, Warn-Varnas A, Niiler P. Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters[J]. Journal of Geophysical Research, 1996, 101(C8): 18237-18258.
[15] Kuhlbrodt T, Griesel A, Montoya M, et al. On the driving processes of the Atlantic meridional overturning circulation[J]. Reviews of Geophysics, 2007, 45(2): RG2001, doi: 10.1029/2004RG000166.
[16] Aagaard K, Carmack E. The role of sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research, 1989, 94(C10): 14 485-14 498.
[17] Blindheim J, Osterhus S. The Nordic Seas, main oceanographic features[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysical Union, 2005: 11-37.
[18] Bryan F. High-latitude salinity effects and interhemispheric thermohaline circulations[J]. Nature, 1986, 323(6 086): 301-304.
[19] Marotzke J, Willebrand J. Multiple equilibria of the global thermohaline circulation[J]. Journal of Physical Oceanography, 1991, 21(9): 1 372-1 385.
[20] Nilsson J, Walin G. Freshwater forcing as a booster of thermohaline circulation[J]. Tellus A, 2001, 53(5): 629-641.
[21] Stouffer R, Yin J, Gregory J, et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes[J]. Journal of Climate, 2006, 19: 1365-1387.
[22] Walsh J E. The role of sea ice in climatic variability: Theories and evidence[J]. Atmosphere-Ocean, 1983, 21(3): 229-242.
[23] Barry R, Serreze M, Maslanik J, et al. The Arctic sea ice-climate system: Observations and modeling[J]. Reviews of Geophysics, 1993, 31(4): 397-422.
[24] Rind D, Healy R, Parkinson C, et al. The role of sea ice in 2 x CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent[J]. Journal of Climate, 1995, 8(3): 449-463.
[25] Arnell N W. Implications of climate change for freshwater inflows to the Arctic Ocean[J]. Journal of Geophysical Research, 2005, 110(D7), doi:10.1029/2004JD005348.
[26] Langehaug H R, Falck E. Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait[J]. Progress in Oceanography, 2012, 96(1): 57-76.
[27] Metcalf W G. A note on water movement in the Greenland-Norwegian Sea[J]. Deep Sea Research, 1960, 7(3): 190-200.
[28] Aagaard K. Temperature variations in the Greenland Sea deep-water[J]. Deep Sea Research and Oceaographic Abstracts, 1968, 15: 281-296.
[29] Nansen F. Northern waters: Captain Roald Amundsen’s Oceanographic Observations in the Arctic Seas in 1901, with A Discussion of the Origin of the Bottom-waters of the Northern Seas[M]. Ann Arbor: In Commission by Jacob Dybwad, 1906: 145.
[30] Carmack E, Aagaard K. On the deep water of the Greenland Sea[J]. Deep Sea Research and Oceaographic Abstracts, 1973, 20: 687-715.
[31] Peterson W H, Rooth C G. Formation and exchange of deep water in the Greenland and Norwegian Seas[J]. Deep Sea Research, 1976, 23(4): 273-283.
[32] Swift J H, Aagaard K. Seasonal transitions and water mass formation in the Iceland and Greenland seas[J]. Deep Sea Research Part A, 1981, 28(10): 1 107-1 129.
[33] Clarke R A, Swift J H, Reid J L, et al. The formation of Greenland sea deep water: Double diffusion or deep convection?[J]. Deep Sea Research Part A, 1990, 37(9): 1 385-1 424.
[34] Schlosser P, Boenisch G, Bayer R, et al. Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data[J]. Science, 1991, 251(4 997): 1 054-1 056.
[35] Bnisch G, Schlosser P. Deep water formation and exchange rates in the Greenland/Norwegian Seas and the Eurasian Basin of the Arctic Ocean derived from tracer balances[J]. Progress in Oceanography, 1995, 35(1): 29-52.
[36] Bnisch G, Blindheim J, Bullister J L, et al. Long-term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea[J]. Journal of Geophysical Research, 1997, 102(C8): 18 553-18 571.
[37] Blindheim J, Borovkov V, Hansen B, et al. Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing[J]. Deep Sea Research I, 2000, 47(4): 655-680.
[38] Dickson B, Yashayaev I, Meincke J, et al. Rapid freshening of the deep North Atlantic Ocean over the past four decades[J]. Nature, 2002, 416(6 883): 832-837.
[39] Curry R, Dickson B, Yashayaev I. A change in the freshwater balance of the Atlantic Ocean over the past four decades[J]. Nature, 2003, 426(6 968): 826-829.
[40] Lilly J M, Rhines P B, Visbeck M, et al. Observing deep convection in the Labrador Sea during winter 1994-1995[J]. Journal of Physical Oceanography, 1999, 29(8): 2 065-2 098.
[41] Gerdes R, Hurka J, Karcher M, et al. Simulated history of convection in the Greenland and Labrador Seas, 1948-2001[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysical Union, 2005: 221-238.
[42] Aagaard K. On the deep circulation in the Arctic Ocean[J]. Deep Sea Research Part A, 1981, 28(3): 251-268.
[43] Smethie W, Ostlund H, Loosli H. Ventilation of the deep Greenland and Norwegian seas: Evidence from krypton-85, tritium, carbon-14 and argon-39[J]. Deep Sea Research Part A, 1986, 33(5): 675-703.
[44] Swift J H, Aagaard K, Malmberg S A. The contribution of the Denmark Strait overflow to the deep North Atlantic[J]. Deep Sea Research Part A, 1980, 27(1): 29-42.
[45] Wadhams P, Gill A, Linden P. Transects by submarine of the East Greenland Polar Front[J]. Deep Sea Research Part A, 1979, 26(12): 1 311-1 327.
[46] Cottier F R, Venables E J. On the double-diffusive and cabbeling environment of the Arctic Front, West Spitsbergen[J]. Polar Research, 2007, 26(2): 152-159.
[47] Smart J H. Spatial variability of major frontal systems in the North Atlantic-Norwegian Sea area: 1980-81[J]. Journal of Physical Oceanography, 1984, 14(1): 185-192.
[48] Chu P. Geophysics of deep convection and deep water formation in oceans[J].Elsevier Oceanography Series, 1991, 57: 3-16.
[49] GSP-Group. Greenland Sea Project: A venture toward improved understanding of the oceans’ role in climate[J]. Eos, Transactions American Geophysical Union, 1990, 71(24): 750-756.
[50] Rhein M. Ventilation rates of the Greenland and Norwegian Seas derived from distributions of the chlorofluoromethanes F11 and F12[J]. Deep Sea Research Part A, 1991, 38(4): 485-503.
[51] Alekseev G V, Johannessen O M, Korablev A A, et al. Interannual variability in water masses in the Greenland Sea and adjacent areas[J]. Polar Research, 2006, 20(2): 201-208.
[52] Marshall J, Schott F. Open-ocean convection: Observations, theory, and models[J]. Reviews of Geophysics, 1999, 37(1): 1-64.
[53] McDougall T J. The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion[J]. Journal of Physical Oceanography, 1984, 14(10): 1 577-1 589.
[54] Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation?[J]. Nature, 1985, 315(6 014): 21-26.
[55] Mu Lin, Chen Xueen, Song Jun, et al. Study on mechanism of interdecadal Atlantic thermohaline circulation variability: Influences of inter-decadal variations by ocean-atmosphere elements[J]. Acta Oceanologica Sinica, 2011, 33(4): 19-28.
[牟林, 陈学恩, 宋军, 等. 大西洋热盐环流年代际变化机制研究Ⅲ. 北大西洋海气要素对热盐环流年代际振荡的影响[J]. 海洋学报, 2011, 33(4): 19-28.]
[56] Weyl P K. The role of the oceans in climatic change: A theory of the ice ages[J]. Meteorological Monographs, 1965, 8: 37-62.
[57] Rooth C. Hydrology and ocean circulation[J]. Progress in Oceanography, 1982, 11(2): 131-149.
[58] Dickson R R, Meincke J, Malmberg S A, et al. The “great salinity anomaly” in the northern North Atlantic 1968-1982[J]. Progress in Oceanography, 1988, 20(2): 103-151.
[59] Watson A, Messias M, Fogelqvist E, et al. Mixing and convection in the Greenland Sea from a tracer-release experiment[J]. Nature, 1999, 401(6 756): 902-904.
[60] Garabato A C, Oliver K I, Watson A J, et al. Turbulent diapycnal mixing in the Nordic Seas[J]. Journal of Geophysical Research, 2004, 109(C12): C12010, doi:10.1029/2004JC002411.
[61] Carmack E C. Combined influence of inflow and lake temperatures on spring circulation in a riverine lake[J]. Journal of Physical Oceanography, 1979, 9(2): 422-434.
[62] Shi Wenqi, Zhao Jinping. Analysis of possible effects of various water masses in Arctic Ocean to Greenland Seaisopycnal cabbeling convection[J]. Acta Oceanologica Sinica, 2012, 34(6):19-29.
[史文奇, 赵进平. 北冰洋水体对格陵兰海混合增密对流的可能影响分析[J]. 海洋学报, 2012, 34(6): 19-29.]
[63] McDougall T J. Double-diffusive convection with a nonlinear equation of state: Part II. Laboratory experiments and their interpretation[J]. Progress in Oceanography, 1981, 10(2): 91-121.
[64] Dietrich G. Atlas of the Hydrography of the Northern North Atlantic Ocean: Based on the Polar Front Survey of the International Geophysical Year Winter and Summer 1958[M]. Copenhagen: ICES, 1969: 140.
[65] McDougall T J. Greenland Sea bottom water formation: A balance between advection and double-diffusion[J]. Deep Sea Research Part A, 1983, 30(11): 1 109-1 117.
[66] Helland-Hansen B, Nansen F. The Norwegian Sea, Its Physical Oceanography Based upon the Norwegian Researches 1900-1904[M]. Kristiania:Det Mallingske Bogtrykkeri, 1909: 390.
[67] Aagaard K, Fahrbach E, Meincke J, et al. Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian, and Iceland Seas[J]. Journal of Geophysical Research, 1991, 96(20): 20 433-20 441.
[68] MEDOC-Group. Observation of formation of deep water in the Mediterranean Sea, 1969[J]. Nature, 1970, 227(5 262): 1 037-1 040.
[69] Killworth P D. On “chimney” formations in the ocean[J]. Journal of Physical Oceanography, 1979, 9(3): 531-554.
[70] Gascard J C, Watson A J, Messias M J, et al. Long-lived vortices as a mode of deep ventilation in the Greenland Sea[J]. Nature, 2002, 416(6 880): 525-527.
[71] Wadhams P, Holfort J, Hansen E, et al. A deep convective chimney in the winter Greenland Sea[J]. Geophysical Research Letters, 2002, 29(10): 1 434.
[72] Carmack E C. On the Hydrography of the Greenland Sea[D]. Seattle: University of Washington, 1972.
[73] Skjelvan I, Olsen A, Anderson L G, et al. A review of the inorganic carbon cycle of the Nordic Seas and Barents Sea[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: American Geophysical Union, 2005: 157-175.
[74] He Yan. Research on Front Features and the Influence of Deep Water Structure and Deep Circulation on Overflow of GIN Seas[D]. Qingdao: Ocean University of China, 2012.
[何琰. 北欧海锋面特征分析与深层水体结构和环流及其对溢流的影响研究[D]. 青岛:中国海洋大学, 2012.]
[75] Karstensen J, Schlosser P, Wallace D W, et al. Water mass transformation in the Greenland Sea during the 1990s[J]. Journal of Geophysical Research: Oceans (1978-2012), 2005, 110(C7): doi:10.1029/2004JC002510.
[76] Coachman L, Barnes C. The contribution of Bering Sea water to the Arctic Ocean[J]. Arctic, 1961, 14(3): 147-161.
[77] Bjerknes J. Atlantic air-sea interaction[J]. Advances in Geophysics, 1964, 10(1): 82.
[78] Swift J H, Koltermann K P. The origin of Norwegian Sea deep water[J]. Journal of Geophysical Research, 1988, 93(C4): 3 563-3 569.
[79] Rothrock D A, Zhang J, Yu Y. The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models[J]. Journal of Geophysical Research, 2003, 108(C3): 3 083.
[80] Stigebrandt A. A model for the thickness and salinity of the upper layer in the Arctic Ocean and the relationship between the ice thickness and some external parameters[J]. Journal of Physical Oceanography, 1981, 11(10): 1 407-1 422.
[81] Cubasch U, Coauthors. Projections of future climate change[M]//Houghton J T, Ding Y, Griggs D J, et al, eds. Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 2001:525-582.
[82] Gregory J, Dixon K, Stouffer R, et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration[J]. Geophysical Research Letters, 2005, 32(12): L12703, doi:10.1029/2005GL023209.
[83] Wunsch C. Abrupt climate change: An alternative view[J]. Quaternary Research, 2006, 65(2): 191-203.
[84] Orvik K A, Skagseth. The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic[J]. Geophysical Research Letters, 2003, 30(17): 1 884.
[85] Jónsson S. Seasonal and interannual variability of wind stress curl over the Nordic Seas[J]. Journal of Geophysical Research, 1991, 96(C2): 2 649-2 659.
[86] Jónsson S. Sources of fresh water in the Iceland Sea and the mechanisms governing its interannual variability[J].ICES Marine Science Symposia, 1992, 195: 62-67.
[87] Meincke J, Jonsson S, Swift J H. Variability of convective conditions in the Greenland Sea[J]. ICES Marine Science Symposia, 1992, 195: 32-39.
[88] Weaver A, Bitz C, Fanning A, et al. Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 231-285.
[89] Furevik T, Mauritzen C, Ingvaldsen R. The flow of Atlantic water to the Nordic SeasArctic Ocean[M]//Ørbæk J B, et al, eds. Arctic Alpine Ecosystems and People in A Changing Environment. New York: Springer, 2007: 123-146.
[90] Kvingedal B. Sea-ice extent and variability in the Nordic Seas, 1967-2002[M]//Drange H, ed. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling. Washington DC: AGU, 2005: 39-49.
[91] Häkkinen S. An Arctic source for the Great Salinity Anomaly: A simulation of the Arctic ice-ocean system for 1955-1975[J]. Journal of Geophysical Research, 1993, 98(C9): 16 397-16 410.
[92] Delworth T L, Manabe S, Stouffer R J. Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation[J]. Geophysical Research Letters, 1997, 24(3): 257-260.
[93] Widell K, Østerhus S, Gammelsrød T. Sea ice velocity in the Fram Strait monitored by moored instruments[J]. Geophysical Research Letters, 2003, 30(19): 1 982.
[94] Jakobsen P K, Nielsen M H, Quadfasel D, et al. Variability of the surface circulation of the Nordic Seas during the 1990s[J].Hydrobiological Variability in the ICES Area, 1999, 219: 367-370.
[95] Aagaard K, Carmack E. The Arctic Oceanclimate: A perspective[M]//Johannessen O M, et al, eds. The Polar Oceans and Their Role in Shaping the Global Enviroment. Washington DC: AGU, 1994: 5-20.
[96] Battisti D, Bhatt U, Alexander M. A modeling study of the interannual variability in the wintertime North Atlantic Ocean[J]. Journal of Climate, 1995, 8(12): 3 067-3 083.
[97] Delworth T L. North Atlantic interannual variability in a coupled ocean-atmosphere model[J]. Journal of Climate, 1996, 9(10): 2 356-2 375.
[98] Deser C, Timlin M S. Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific[J]. Journal of Climate, 1997, 10(3): 393-408.
[99] Dickson B. All change in the Arctic[J]. Nature, 1999, 397(6 718): 389-391.
100 Van Loon H, Rogers J C. The seesaw in winter temperatures between Greenland and Northern Europe. Part I: General description[J]. Monthly Weather Review, 1978, 106(3): 296-310.
101 Hurrell J W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation[J]. Science, 1995, 269(5 224): 676-679.
102 Rogers J C. North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe[J]. Journal of Climate, 1997, 10(7): 1 635-1 647.
103 Kostianoy A G, Nihoul J C J. Frontal zones in the Norwegian, Greenland, Barents and Bering Seas[M]//Nihoul J C J, Kostianoy A G, eds. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions. The Netherlands: Springer, 2009: 171-190.
104 Zhang X, Ikeda M, Walsh J E. Arctic sea ice and freshwater changes driven by the atmospheric leading mode in a coupled sea ice-ocean model[J]. Journal of Climate, 2003, 16(13): 2 159-2 177.
105 Nansen F. The Oceanography of the North Polar Basin[M].New Lork: Longmans, Green, and Company, 1902: 427.
106 Hopkins T S. The GIN Sea—A synthesis of its physical oceanography and literature review 1972-1985[J]. Earth-Science Reviews, 1991, 30(3): 175-318.
107 Aagaard K. Wind-driven transports in the Greenland and Norwegian seas[J]. Deep Sea Research, 1970, 17(2): 281-291.
108 Heinze C, Schlosser P, Koltermann K, et al. A tracer study of the deep water renewal in the European polar seas[J]. Deep Sea Research Part A, 1990, 37(9): 1 425-1 453.
109 Østerhus S, Gammelsrød T. The abyss of the Nordic Seas is warming[J]. Journal of Climate, 1999, 12(11): 3 297-3 304.
110 Dickson R, Lazier J, Meincke J, et al. Long-term coordinated changes in the convective activity of the North Atlantic[J]. Progress in Oceanography, 1996, 38(3): 241-295.
111 Budéus G, Schneider W, Krause G. Winter convective events and bottom water warming in the Greenland Sea[J]. Journal of Geophysical Research, 1998, 103(C9): 18 513-18 527.
112 Hansen B, Turrell W R, Østerhus S. Decreasing overflow from the Nordic Seas into the Atlantic Ocean through the Faroe Bank Channel since 1950[J]. Nature, 2001, 411(6 840): 927-930.
113 Dickson R R, Brown J. The production of North Atlantic deep water: Sources, rates, and pathways[J]. Journal of Geophysical Research, 1994, 99(C6): 12 319-12 342.
114 Vinje T. Fram Strait ice fluxes and atmospheric circulation: 1950-2000[J]. Journal of Climate, 2001, 14(16): 3 508-3 517.
115 Kwok R, Cunningham G, Pang S. Fram Strait sea ice outflow[J]. Journal of Geophysical Research, 2004, 109(C1): C01009, doi:10.1029/2003JC001785.
116 Holliday N P, Hughes S, Bacon S, et al. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas[J]. Geophysical Research Letters, 2008, 35(3), doi: 10.1029/2007GL032675.
117 Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: Results from the Larsen-93 expedition[J]. Geophysical Research Letters, 1995, 22(9): 1 061-1 064.
118 Grotefendt K, Logemann K, Quadfasel D, et al. Is the Arctic Ocean warming?[J]. Journal of Geophysical Research, 1998, 103(C12): 27 679-27 687.
119 Johannessen O M, Shalina E V, Miles M W. Satellite evidence for an Arctic sea ice cover in transformation[J]. Science, 1999, 286(5 446): 1 937-1 939.
120 Johannessen O M, Bengtsson L, Miles M W, et al. Arctic climate change: Observed and modelled temperature and sea-ice variability[J]. Tellus A, 2004, 56(4): 328-341.
121 Rothrock D A, Yu Y, Maykut G A. Thinning of the Arctic sea-ice cover[J]. Geophysical Research Letters, 1999, 26(23): 3 469-3 472.
122 Furevik T, Bentsen M, Drange H, et al. Temporal and spatial variability of the sea surface salinity in the Nordic Seas[J]. Journal of Geophysical Research, 2002, 107(C12): 8 009.
123 Bryan F. Parameter sensitivity of primitive equation ocean general circulation models[J]. Journal of Physical Oceanography, 1987, 17(7): 970-985.
124 Bentsen M, Drange H, Furevik T, et al. Simulated variability of the Atlantic meridional overturning circulation[J]. Climate Dynamics, 2004, 22(6): 701-720.
125 Vellinga M, Wood R A, Gregory J M. Processes governing the recovery of a perturbed thermohaline circulation in HadCM3[J]. Journal of Climate, 2002, 15(7): 764-780.
126 Meincke J, Rudels B. Greenland Sea Deep Water: A balance between convection and advection[C]//Nordic Seas Symposium. Hamburg: University of Hamburg, 1995: 436-440.
[1] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[2] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[3] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[4] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
阅读次数
全文


摘要