地球科学进展 ›› 2002, Vol. 17 ›› Issue (3): 348 -354. doi: 10.11867/j.issn.1001-8166.2002.03.0348

综述与评述 上一篇    下一篇

天然放射性碳同位素在海洋有机地球化学中的应用
王旭晨 1,戴民汉 2   
  1. 1.美国麻省州立大学波士顿分校环境与海洋科学系,美国 波士顿 02125; 2.厦门大学海洋环境科学教育部重点实验室环境科学研究中心,福建 厦门361005
  • 收稿日期:2001-05-10 修回日期:2001-08-22 出版日期:2002-12-20
  • 通讯作者: 王旭晨(1955-),男,山东人,教授,主要从事海洋有机地球化学及同位素地球化学研究.E-mail: xuchen.wang@umb.edu.cn E-mail:xuchen.wang@umb.edu.cn
  • 基金资助:

    国家杰出青年基金项目“珠江三角洲及其邻近的南海北部海域中碳的生物地化学循环研究——胶体在该循环中的显著作用”(编号:49825162);国家自然科学基金项目“珠江口与南中国海北部胶体有机组成与结构表征”(编号:49976021);教育部直属学校聘请外国专家重点项目“珠江口与南海北部海域二氧化碳的通量研究”(1999—2000年);国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078500)资助

THE APPLICATION NATURALLY OCCURRED RADIOCARBON ( 14C) IN  MARINE ORGANIC GEOCHEMISTRY STUDIES

WANG Xu-chen 1 , DAI Min-han 2   

  1. 1. Environmental, Coastal and Ocean Sciences Department, University of Massachusetts at Boston, MA 02125, USA; 2. Key Laboratory for Marine Environmental Science of Ministry of Education/Environmental Science Research Center, Xiamen University, Xiamen  361005, China
  • Received:2001-05-10 Revised:2001-08-22 Online:2002-12-20 Published:2002-06-01

天然放射性碳(14C)是年代测定的有效手段,它在考古学和地质学的应用已有几十年的历史。过去10年中,伴随着加速器质谱仪(AMS)技术和检测灵敏度的提高,AMS已经能够检测少于mg C量级样品中自然丰度水平的14C,这大大扩展了14 C在自然科学,特别是地球科学研究中的应用范畴。简要评述了利用天然14 C进行海洋地球化学研究的应用,重点介绍了前景广阔、并已取得显著成果的应用领域。

Naturally occurred radiocarbon (14C), as a powerful tool, has been used for decades for archeological and geological dating. Recent development and applications of Accelerator Mass Spectrometry (AMS) have made it possible to detect 14C  at its natural abundance in very limited sample sizes (<mg C). This has greatly increased the range of applications using 14C in natural science, particularly in the Earth sciences. In this paper, we briefly reviewed the principal and some recent applications of using natural 14C  in marine geochemical studies mainly in three areas:①14C studies of carbon cycling in the ocean; ②Using 14C as a tracer to determine the sources, transformation and turn over of the major organic compound classes in different organic carbon pools in the ocean; and ③14C studies of compound-specific biomarkers in marine sediments.  These studies have shown novel results and demonstrated that natural radiocarbon measurements at compound level provide a new and sensitive tool for determining the sources, transformation and biogeochemical processes of carbon cycle in  oceans in the past and at present both at large and small scales.

中图分类号: 

[1] Libby W F. Radiocarbon Dating[M]. Chicago: The University of Chicago Press, 1952. 
[2] Cain W F, Suess H E. Carbon 14 in tree rings[J]. J Geophysical Research,1976, 81: 3 688-3 694. 
[3] Levin I, Kromer B, Schoch-Fischer H, et al. Twenty-five years of troposheric 14C observations in Central Europe[J]. Radiocarbon, 1985, 27: 1-19. 
[4] Hedges J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry, 1992, 39: 67-93. 
[5] Stuiver M, Polach H A. Discussion: reporting of 14C data[J]. Radiocarbon, 1977, 19: 355-363. 
[6] Olson J S, Garrels R M, Berner R A, et al. The natural carbon cycle[A]. In: Trabalka J R, ed. Atmospheric Carbon Dioxide and the Global Carbon Cycle[C]. Washington: US Department of Energy, 1985. 175-213. 
[7] Williams P M, Druffel E R M. Radiocarbon in the dissolved organic matter in central north Pacific Ocean[J]. Nature, 1987, 330: 246-248. 
[8] Druffel E R M, Williams P M, Bauer J E, et al. Cycling of dissolved and particulate organic matter in the open ocean[J]. J Geophysical Research, 1992, 97: 15 639-15 659. 
[9] Wang X-C, Druffel E R M, Lee C. Radiocarbon in organic compound classes in particulate organic matter and sediment in the deep northeast Pacific Ocean[J]. Geophysical Research Letters, 1996, 23: 3 583-3 586. 
[10] Wang X-C, Druffel E R M, Griffin S, et al. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 365-1 378. 
[11] Wang X-C, Druffel E R M. Radiocarbon and stable carbon isotope compositions of organic compound classes in sediments from the NE Pacific and Southern Oceans[J]. Marine Chemistry, 2001, 73: 65-81. 
[12] Parsons T R, Stephens K, Strickland J D H. On the chemical composition of eleven species of marine phytoplankters[J]. J Fishery  Research Board Canada, 1961, 18: 1 001-1 016. 
[13] Lee C, Wakeham S G. Organic matter in seawater: biogeochemical processes[A]. In: Riley J P, ed. Chemical Oceanography[C]. New York: Academic Press, 1988,9: 1-51. 
[14] Wakeham S G, Lee C. Production, transport, and alteration of particulate organic matter in the marine water column[A]. In: Engel M H, Macko S A, eds. Organic Geochemistry: Principles and Applications[C]. New York: Plenum Press, 1993. 145-169. 
[15] Henrichs S M, Sugai S F. Adsorption of amino acids and glucose by sediments of Resurrection Bay (Alaska): functional group effects[J]. Geochimica et Cosmochimica Acta, 1993, 57: 823-835. 
[16] Keil R G, Montlucon D B, Prahl F G, et al. Sorption preservation of labile organic matter in marine sediments[J]. Nature, 1994, 370: 549-552. 
[17] Cherrier J, Bauer J E, Druffel E R M, et al. Radiocarbon in marine bacteria: Evidence for the ages of assimilated carbon[J]. Limnology and Oceanography, 1999, 44: 730-736. 
[18] Eglinton T I, Benitez-Nelson B C, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997, 277: 796-799. 
[19] Pearson A, Eglinton T I. An organic tracer for surface ocean radiocarbon[J]. Paleoceanography, 2000, 15: 541-550. 
[20] Pearson A, Eglinton T I. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific Δ14C and δ13C data[J]. Organic Geochemistry, 2000, 31: 1 103-1 116. 
[21] Nakatsuka T, Handa N, Harada N, et al. Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distribution of its δ15N, δ13C and δ14C[J].  Deep-Sea Research I, 1997, 44: 1 957-1 979. 
[22] Honda M C, Kusakabe M, Nakabayashi S, et al. Radiocarbon of sediment trap samples from the Okinawa trough: lateral transport of 14C-poor sediment from the continental slope[J]. Marine Chemistry, 2000, 68: 231-247. 
[23] Guo L, Santschi P H, Cifuentes L A, et al. Cycling of high molecular weight dissolved organic matter in the Middle Atlantic Bight as revealed by carbon isotopic (13C and 14C) signatures[J]. Limnology and Oceanography, 1996, 41: 1 242-1 252. 
[24] Wang X C, Chen R F, Whelan J, et al. Contribution of old carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico[J]. Geophysical Research Letters, 2001.

[1] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[2] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[3] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[4] 吴 莹,张 经,唐运千. 中国海洋有机地球化学研究的若干进展[J]. 地球科学进展, 1999, 14(3): 256-261.
阅读次数
全文


摘要