地球科学进展 ›› 1998, Vol. 13 ›› Issue (2): 145 -150. doi: 10.11867/j.issn.1001-8166.1998.02.0145

干旱气候变化与可持续发展 上一篇    下一篇

非线性地球化学动力学
谭凯旋 1,戴塔根 2   
  1. 1.中国科学院长沙大地构造研究所 长沙 410013;2.中南工业大学地质系 长沙 410083
  • 收稿日期:1997-05-20 修回日期:1997-09-27 出版日期:1998-04-01
  • 通讯作者: 谭凯旋
  • 基金资助:

    中国科学院重点项目“构造成矿作用的非线性动力学研究”(项目编号:KZ952-S1-402)和国家博士后基金项目“地洼盆地构造—流体演化与成矿作用的非线性动力学研究”资助.

NONLINEAR GEOCHEMICAL DYNAMICS

Tan Kaixuan 1,Dai Tagen 2   

  1. 1.Changsha Institute of Geotectonics, Chinese Academy of Science, Changsha 410013;2.Department of Geology, Central South University of Technology, Changsha 410083
  • Received:1997-05-20 Revised:1997-09-27 Online:1998-04-01 Published:1998-04-01

非线性地球化学动力学的研究主要包括五个方面:①地球化学非线性反应动力学;②矿物沉淀、结晶与生长的非线性动力学;③流体流动-反应耦合的非线性动力学;④力学-化学耦合的非线性动力学;⑤地球化学循环的非线性动力学或非线性全球动力学。分别总结了上述五个方面的研究进展,讨论了地球化学非线性动力学研究中存在的问题和今后的发展方向。

The studies on nonlinear geochemical dynamics are mainly include:(1)dynamics of nonlinear reactions in geochemistry,(2)nonlinear dynamics of precipitation, crystalline and growth of minerals,(3)nonlinear dynamics of coupled between flow and reaction,(4)nonlinear dynamics of mechano-chemical coupling, and(5)nonlinear dynamics of geochemical cycles or nonlinear global dynamics. This paper reviews the new advance on nonlinear geochemical dynamics and discusses the research priority of nonlinear geochemical dynamics.

中图分类号: 

[1] 於崇文. 地球化学系统的复杂性探索. 地球科学, 1994, 19(3) : 283~286.
[2] 於崇文. 地球化学动力学体系. 现代地质, 1989, 3(3) : 267~289.
[3] Ortoleva P. Geochemical Self-organization. Oxford: Oxford University Press, 1994.
[4] Thompson J B Jr. Geochemical reaction and open systems. Geochim Cosmochim Acta, 1970, 34:520~551.
[5] Dibble Jr W E,Tiller W A.Non-equilibrium water/rock interactions:Ⅰ.Model for interface-controlled reactions.Geochim Cosmochim Acta, 1981, 45:79~92.
[6] 张荣华, Borcsik M, Crerar D. 固—液相反应体系CaF2-HCl-H2O内化学振荡的发现.科学通报, 1991, 36(20):1 836~1 837.
[7] Faimon J. Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering.Geochim Cosmochim Acta, 1996, 60:2 901~2 907.
[8] 谭凯旋, 张哲儒, 王中刚. 辉铜矿溶解反应的非周期振荡. 自然科学进展, 1996, 6(6) :751~756.
[9] Tan Kaixuan, Zhang Zheru, Wang Zhonggang. Chemical oscillation and chaotic attractors of dissolution reaction of chalcopyrite in NaCl solutions. Chinese Science Bullet in, 1996, 41(12): 1 020~1 023.
[10] Merino E. Survey of geochemical self-patterning phenomena. In: Nicolis G, Baras F, eds. Chemical In stabilities. Boston: D Reidel Publishing Company, 1984. 305~328.
[11] Haase C S,Chadam J,Feinn D,et al.Oscillatory zoning in plagioclase feldspar.
Science, 1980, 209: 272~274.
[12] Ortoleva P. Role of attachment kinetic feed back in the oscillatory zoning of crystals from melts. Earth Sci Rev,1990, 29: 3~8.
[13] Anovitz L M. Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: Nonlinear dynamics in regions of immiscibility. American Mineralogist, 1991, 76: 1 319~1 327.
[14] 李如生. 岩浆岩中矿物组分分布的有序现象和耗散结构. 矿物学报,1984,4:303~310.
[15] 吴金平, 王江海. 硅酸盐固溶体矿物中组分的韵律型空间分布及形成过程的时空自组织. 矿物学报, 1990, 10: 193~203.
[16] 吴金平, 李才伟, 肖文丁, 等. 界面质量守恒方程和一些生长层的自组织模型. 中国科学(E辑), 1996, 26(5): 1~10.
[17] 王江海, 吴金平. 硅酸盐固溶体矿物中组分的非韵律型空间分布及形成过程的动力学机制. 矿物学报, 1992, 12(1): 1~6.
[18] Fowler A D. Self-organized mineral textures of igneous rocks: the fractal approach. Earth Sci Rev, 1990,29: 47~55.
[19] Chadam J, Ortoleva P. Morphological instabilities in physico-chemical systems. Earth Sci Rev, 1990, 29:175~181.
[20] Wollkind D J, Vislocky M. An interfacial model equation for the bifurcation of solidification patterns during LPEE processes. Earth Sci Rev, 1990, 29: 349~368.
[21] Fisher G W, Lasaga A C. Irreversible thermodynamics in petrology. In: Lasaga A C, Kirkpatrick R J, eds. Kinetics of Geochemical Processes. Washington: Mineral Soc Am, 1981. 171~209.
[22] Ortoleva P. The self-organization of Liesegang bands and other precipitate patterns. In: Nicolis G,Baras F,eds.Chemical Instabilities. Boston: D Reidel Publishing Company, 1984. 289~297.
[23] Sultan R, Ortoleva P, DePasquale F, et al. Bifurcation of the Ostwald-Liesegang supersaturation-nucleation-depletion cycle. Earth Sci Rev, 1990,29:163~173.
[24] 谭凯旋. 热水沉积中的奥斯特瓦尔德作用. 见:欧阳自远主编. 矿物岩石地球化学新探索. 北京: 地震出版社,1993. 99~101.
[25] Ortol eva P,Merino E,Moore C.Geochemical self-organization Ⅰ and Ⅱ.Amer J Sci, 1987, 287:979~1 040.
[26] Ripley E, Merino E, Moore C, et al. Mineral zoning in sediment-hosted copper deposits. In: Wolf K H, eds. Hand-book of Strata-Bound and Stratiform Ore Deposits, v13. Amsterdam: Elservier, 1985. 237~260.
[27] 於崇文,蒋耀淞.云南个旧成矿区锡石—硫化物矿床原生金属分带形成的动力学机制.地质学报, 1990, 64 (3): 226~237.
[28] Chen Wei,Ortoleva P.Reaction front fingering in carbonate-cemented sandstones.Earth Sci Rev, 1990, 29:183~198.
[29] 谭凯旋, 张哲儒, 王中刚. 聚流成矿作用的非线性动力学. 矿物岩石, 1995, 15(增刊):139~140.
[30] Ortoleva P, Merino E, Strickholm P. A kinetic theory of metamorphic layering in anisotropically stressed rocks.Amer J Sci, 1982, 282:617~643.
[31] Dewers T,Ortoleva P.Mechano-chemical coupling in stressed rocks.Geochim Cosmochim Acta, 1989, 53:1 243~1 258.
[32] Dewers T, Ortoleva P. A coupled reaction-transport-mechanical model for intergranular pressure solution, stylolites and differential compaction and cementation in clean sandstone. Geochim Cosmochim Acta, 1990, 54: 1 609~1 625.
[33] Williams P F. Differentiated layering in metamorphic rocks. Earth Sci Rev, 1990, 29: 267~281.
[34] Walgraef D.Reaction-transport dynamics and dissolution patterns in deformed materials. Earth Sci Rev, 1990, 29:299~308.
[35] Meike A. Considerations for quantitative determination of the role of dislocations in selective dissolution. Earth Sci Rev, 1990, 29:309~320.
[36] Park A, Dewers T, Ortoleva P. Cellular and oscillatory self-induced methane migration. Earth Sci Rev, 1990, 29:249~265.
[37] Ghaith A, Chen Wei, Ortoleva P. Oscillatory methane release from shale source rocks. Earth Sci Rev, 1990, 29;241~248.
[38] Powley D E. Pressures, hydrogeology and large scale seals in petroleum basins. Earth Sci Rev, 1990, 29:215~226.
[39] Dewers T, Ortoleva P. Nonlinear dynamical as pects of deep basin hydrology: fluid compartment formation and episodic fluid release. Amer J Sci, 1994, 294:713~755.
[40] Ortoleva P, Al-Shaieb Z, Puckette J. Genesis and dynamics of basin compartments and seals. Amer J Sci, 1995,295: 345~427.
[41] Lasaga A C. The kinetic treatment of geochemical cycles. Geochim Cosmochim Acta, 1980, 44:815~828.
[42] Cappellen P V,Wang Yifen. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Amer J Sci, 1996, 296: 197~243.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[8] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[9] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[10] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[11] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[12] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[13] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[14] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[15] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
阅读次数
全文


摘要