地球科学进展 ›› 2011, Vol. 26 ›› Issue (11): 1173 -1190. doi: 10.11867/j.issn.1001-8166.2011.11.1173

综述与评述 上一篇    下一篇

斑岩铜矿床研究进展
张云国, 周朝宪   
  1. 1.有色金属矿产地质调查中心,北京100012;2.北京矿产地质研究院,北京100012
  • 收稿日期:2011-07-28 修回日期:2011-09-19 出版日期:2011-11-10
  • 通讯作者: 张云国(1982-),男,山东聊城人,工程师,主要从事矿床学研究、矿产勘查和矿山地质等工作. E-mail:zhangyg0603@163.com

Review of Porphyry Copper Deposit

Zhang Yunguo, Zhou Chaoxian   

  1. 1.China Geological Survey of Nonferrous Metal Resources, Beijing100012, China;2.Beijing Institute of Geology for Mineral Resources, Beijing100012, China
  • Received:2011-07-28 Revised:2011-09-19 Online:2011-11-10 Published:2011-11-10

斑岩铜矿不但形成于环太平洋成矿域,还形成于特提斯成矿域和中亚成矿域(古亚洲洋成矿域)。成矿物质来源于深部,经过“洋壳—地幔熔岩流”、“原始岩浆”、“浅部富矿岩浆”和“岩浆结晶—成矿”4个阶段,其中在“原始弧岩浆”阶段,通过MASH过程,有大量成矿物质和能量的聚集。成矿流体为富H2O、高温、高压、高盐度、强氧化性、高氧逸度的富矿气液相流体,这些特点有利于成矿物质在岩浆—热液分离过程中向流体富集,并以氯络合物的形式运移。随着成矿流体的上侵,温度和压力的降低是成矿物质沉淀的主要影响因素。磁铁矿的结晶为成矿流体提供了大量的S2-离子,也是导致成矿物质沉淀的主要因素。斑岩型蚀变带从里向外为石英内核、钾化带、SCC带和泥化带,铜矿化主要发育在矿化带外围以及SCC带。目前,斑岩铜矿成矿模型主要有经典模型、系统模型和多阶段叠加模型。

Porphyry copper deposit as the largest source of Cu is one of the most important deposits in the world. Porphyry Copper Deposit not only occured in Circum-Pacific ore-forming region, but also occured in Tethys ore-forming region and Middle-Asian(Paleo-Asian Oceanic) oreforming region. The mineralization materials derived from the deep. Porphyry forms through four stages: “Oceanic Crust-Mantle Lava Flow”,“Original Magma”,“Shallow Ore Magma”,“Crystallization of Magma-Minerali-zation”. In the stage of “Original Magma”, much metallogenic materials and energy gather through the process of “MASH”. Ore-forming fluids are high-grade fliuds of gas-liquid phase, which are of fluid-rich, high temperature, high pressure, high salinity, strong oxidizing, high oxygen fugacity. The characteristics of ore-forming fluids are favorable for metallogenic materials to gather from magmas to fluids in the process of magma-hydrothermal separation. The copper is transported and migrated in form of Cl-complexes. With the ascent of ore-forming fluids, lowering of temperature and pressure is the main factors resulting in copper precipitation. The crystallization of magnetite resulting from lowering temperature and pressure provides much of S2- and  plays an important role in the formation of porphyry copper ore. From the inner to the outside, the alteration zones,in general,are composed of quartz zone,potassic zone,SCC zone and  argillic zone.The proposed genesis models which are commonly accepted,up to now, include the classical model, the system model and the model of polyphasal overprinting events.

中图分类号: 

[1]Ransome F L. The geology and Ore Deposits of the Bisbee Quadrangle, Arizona[M/OL]United States: Goverment Printing Office, 1904, 21:1-168.
[2]Emmons W H. Principles of Economic Geology[M].New York: McGraw-Hill,1918.
[3]Sillitoe R H. Porphyry copper systems: An invited paper[J]. Economic Geology, 2010, 105(1):3-41.
[4]Nie Fengjun, Jiang Sihong,Zhao Shengmin. New advances of porphyry copper deposits[J]. Neimenggu Geology, 2000, 2(1):1-11.[聂凤军,江思宏,赵省民.斑岩型铜金矿床研究新进展[J]. 内蒙古地质, 2000, 2(1):1-11.]
[5]Misra K C. Understanding Mineral Deposits[M]. USA: Kluwer Academic Publishers,2000:353-413.
[6]Singer D A, Berger V I, Menzie W D, et al. Porphyry copper deposit density[J]. Economic Geology, 2005, 100(3):491-514.
[7]Rui Zongyao, Zhang Lisheng,Chen Zhenyu, et al. Approach on source rock or source region of porphyry copper deposits[J]. Acta Petrologica Sinica, 2004, 20(2):229-238.[芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004, 20(2):229-238.]
[8]Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 1970, 65(4):373-408.
[9]Xiao Bo, Qin Kezhang, Li Guangming, et al.Distributions and characters of Zhibula-Langmujiaguo skarn Cu deposits environing the Qulong porphyry Cu-Mo deposit and their implications for ore-search towards to the deep subsurface[J]. Geology and Exploration, 2011, 47(1): 43-53.[肖波, 秦克章, 李光明,等. 冈底斯驱龙斑岩铜—钼矿区外围矽卡岩型铜矿的分布、特征及深部找矿意义[J].地质与勘探,2011,47(1):43-53.]
[10]Patrick B R, Marco T E. The bingham canyon porphyry Cu-Mo-Au deposit. I. sequence of intrusions, vein formation, and sulfide deposition[J]. Economic Geology, 2010, 105(1):43-68.
[11]Vry V H, Wilkinson J J, Seguel J, et al.Multistage intrusion, brecciation, and veining at El teniente, chile:Evolution of a nested porphyry system[J]. Economic Geology, 2010, 105(1):119-153.
[12]Xu Rongke, Shan Liang, Zheng Youye, et al. Review and progress: Theory and exploration technology to porphyry copper deposit[J]. Geology and Mineral Resources of South China, 2011, 27(1):22-32.[许荣科,陕亮,郑有业,等.回顾与进展:斑岩铜矿理论研究及勘查技术[J]. 华南地质与矿产, 2011, 27(1):22-32.] 
[13]Yao Chunliang, Lu Jianjun, Guo Weimin, et al. The latest advances in researches on porphyry copper deposits[J]. Mineral Deposits, 2007, 26(2):221-229.[姚春亮,陆建军,郭维民,等.斑岩铜矿若干问题的最新研究进展[J]. 矿床地质, 2007, 26(2):221-229.]
[14]Kerrich R, Goldfarb R, Groves D, et al. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins[J].Reviews in Economic Geology, 2000, 13:501-551.
[15]Sillitoe R H, Perello J. Andean copper province: Tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery[J]. Anniversary Volume in Economic Geology, 2005, 100:845-890.
[16]Hedenquist J W, Arriba A J, Reynolds T J. Evolution of anintrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93(4):373-404.
[17]Cooke D R, Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics, distribution and tectonic controls[J]. Economic Geology, 2005, 100(5):801-818.
[18]Sillitoe R H. Geotectonic setting of western Pacific gold deposits in basement tectonics,characterisation and comparison of Ancient and Mesozoic Continental Margins[M]Bartholomew M J, Hyndman D W, Mogok D W,eds.Basement Tectonics 8: Characterization and Comparison of Ancient and Mesozoic R Continental Margins. The Netherlands:Academic Publishers,1992:665-678.
[19]Bainbridge A L, Corbett G J, Leach T M. The Nena high sulphidation system, Frieda River Copper, PNG[C]. Geology Exploration and Mining Conference Lae PNG. June 1994, Australasian Institute of Mining and Metallurgy,1994.
[20]Sillitoe R H, Gappe I M. Philippine Porphyry Copper Deposits: Geologic Settings and Characteristics[R]. CCOP Technical Report,1984.
[21]Shatwell D. Epithermal gold mineralization and Late Cenozoic magmatism in the Melanesian outer arc[J]. AIMM Proceedings Pacrim Conference, 1987:393-398.
[22]Lindley D. Early Cainozoic stratigraphy and structure of the Gazelle Peninsular, east New Britain:An example of eitxtension tectonics in the New Britain arc-trench complex[J]. Australian Journal of Earth Science, 1988, 35(2):231-244.
[23]Tu Guangchi. The development of the mineral deposit prospecting and research work in the past twenty years: A brief review[J].Mineral Deposits, 2001,20(1): 1-9.[涂光炽. 过去20年矿床事业发展的概略回顾[J]. 矿床地质, 2001,20(1): 1-9.]
[24]Zhang Qi, Qin Kezhang, Wang Yuanlong, et al. Study on Adakite Broadened to challenge the Cu and Au exploration in China[J]. Acta Petrologica Sinica,2004, 20(2):195-205.[张旗, 秦克章, 王元龙, 等. 加强埃达克岩研究,开创中国Cu、Au等找矿工作的新局面[J]. 岩石学报, 2004, 20(2):195-205.]
[25]Leng Chengbiao, Zhang Xingchun, Chen Yanjing, et al. Discussion on the relationship between Chinese porphyry copper deposits and adakitic rocks[J]. Earth Science Frontiers, 2007, 14(5):199-210.[冷成彪, 张兴春, 陈衍景, 等. 中国斑岩铜矿与埃达克(质)岩关系探讨[J]. 地学前缘, 2007, 14(5):199-210.][26]Zhang L C, Xiao W J, Qin K Z, et al. The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: Trace element and Sr-Nd-Pb isotope geochemistry[J]. Mineralium Deposita, 2006, 41(2):188-200.
[27]Li J X, Qin K Z, Li G M, et al. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 2011, 41(6):525-536.
[28]Qin K Z, Sun S, Li J L, et al. Paleozoic epithermal Au and porphyry Cu deposits in north Xinjiang, China: Epochs, features, tectonic linkage and exploration significance[J].Resource Geology, 2002, 52(4): 291-300.
[29]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology,1972, 67(2):184-197.
[30]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J].Australian Journal of Earth Sciences,1997, 44(3):373-388.
[31]Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust[J].Reviews of Geophysics,1991, 29:279-316.
[32]Kay S M, Godoy E, Kurtz A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes[J].Geological Society of America Bulletin,2005, 117:67-88.
[33]Sillitoe R H. Major regional factors favoring large size,high hypogene grade,elevated gold content and supergene oxidation and enrichment of porphyry copper deposit: A global perspective[C]∥Perth,Conference Proceedings: Glenside,South Australia,Australian Mineral Foundation, 1998:21-34.
[34]Tosdal R M, Richards J P. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J].Reviews in Economic Geology,2001, 14:157-181.
[35]Rui Zongyao, Hou Zengqian, Li Guangming, et al. Subduction, collision, deep fracture, adakite and porphyry copper deposits[J].Geology and Prospecting,2006, 42(1):1-6.[芮宗瑶,侯增谦,李光明,等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J]. 地质与勘探, 2006, 42(1):1-6.]
[36]Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J].Geology,1990, 18(7): 630-633.
[37]Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology,2003, 98(8): 1 515-1 533.
[38]James D E, Sacks I S. Cenozoic formation of the Central Andes: A geophysical perspective[C]Skinner B J ed. Geology and Ore Deposits of the Central Andes. Specical Publication No.7, Society of Economic Geology, 1999, 7:1-25.
[39]Sawkins F J. Sulfide ore deposits in relation to plate tectonics[J].Journal of Geology,1972, 80(4):377-397.
[40]Burnham C W, Ohmoto H. Late-stage processes of felsic magmatism[J]. Mining Geology,1980, 8(Special Issue):1-11.
[41]Chen Wenming. The relationship between the formation of the Cu-Mo deposits and evolution in China[J].Geoscience,1993, 15:19-30.[陈文明.中国Cu-Mo床形成与演化关系[J]. 现代地质, 1993, 15:19-30.]
[42]Chen Wenming, Zhang Chengxin, Li Shuping,et al. Polygenetic mineralization of the Early Proterozoic Tong Kuangyru meta-porphyry copper deposit in the Zhongtiao Mountains, Shanxi province[J].Acta Geologica Sinica,1998,(2):154-168.[陈文明,张承信,李树屏,等.中条山铜矿峪早元古代变斑岩铜矿复合成矿作用[J]. 地质学报, 1998,(2):154-168.]
[43]Chen Wenming. The origins of porphyry copper deposits[J]. Geoscience, 2002, 1:1-8.[陈文明.论斑岩铜矿的成因[J]. 现代地质, 2002, 1:1-8.]
[44]Rui Zongyao, Zhang Hongtao, Chen Renyi, et al. An approach to some problems of porphyry copper deposits[J].Mineral Deposits,2006, 25(4):491-500.[芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4): 491-500.]
[45]Oyargun R, Maryuey A, Lillo J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism[J].Mineralium Deposita, 2001, 36(8):794-798.
[46]Zhang Qi,Wang Yan, Liu Hongtao, et al. On the space-time distribution and geodynamic environments of adakites in China annex: Controversies over differing opinions for adakites in China[J].Earth Science Frontiers,2003, 10(4):385-400.[张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景附:国内关于埃达克岩的争论[J]. 地学前缘, 2003, 10(4):385-400.]
[47]Hou Zengqian, Mo Xuanxue, Gao Yongfeng, et al. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibeten plateau and in northern Chile[J].Mineral Deposits, 2003, 22(1):1-12.[侯增谦,莫宣学,高永丰,等.埃达克岩: 斑岩铜矿的一种可能的重要母岩——以西藏和智利斑岩铜矿为例[J]. 矿床地质, 2003, 22(1):1-12.]
[48]Hou Zengqian, Meng Xiangjin, Qu Xiaoming,et al. Copper ore potential of adakitic instrusives in Gangdese porphyry copper belt: Contrains from rock phase and deep melting process[J].Mineral Deposits, 2005, 24(2): 108-120.[侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J]. 矿床地质, 2005, 24(2):108-120.]
[49]Zhang Yuquan, Xie Yingwen, Liang Huaying, et al. Petrogenetic series and ore-bearing porphyries of the Yulong copper ore belt in eastern Tibet[J].Geochimica,1998, 27(3):236-243.[张玉泉,谢应雯,梁华英,等.藏东玉龙铜矿含矿斑岩及成岩系列[J]. 地球化学, 1998, 27(3):236-243.]
[50]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347:662-665.
[51]Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J].Geology,1993, 21(11):1 007-1 010.
[52]Peacock S M, Rusher T, Thompson A B. Partial melting of subducting oceanic crust[J]. Earth and Planetary Science Letters,1994, 121:224-227.
[53]Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J].Lithos,1999, 46(3):411-429.
[54]Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J].Nature,2001, 409:500-504.
[55]Xiao Bo, Qin Kezhang, Li Guangming, et al. S-rich, Highly-Oxidized Ore-bearing Magma in the Qulong Giant Porphyry-Type Cu-Mo Deposit in Southern Tibet—Evidence from Magmatogenic Anhydrite[J].Acta Geologica Sinica,2009, 83(12):1 860-1 869.[肖波, 秦克章, 李光明, 等. 西藏驱龙巨型斑岩Cu-Mo矿床的富S、高氧化性含矿岩浆——来自岩浆成因硬石膏的证据[J]. 地质学报, 2009, 83(12):1 860-1 869.]
[56]Titley S R, Beane R E. Porphyry copper deposits[J].Economic Geology,1973, 68(6):799-815.
[57]Titley S R ed. Advances in Geology of the Porphyry Copper Deposits of Southwestern North America[M]. Tueson: University Arizona Press, 1982.
[58]Candela P A, Holland H D. A mass transfer model for copper and molybdenum in magmatic hydrothermal fluid system: The origin of porphyry-type ore deposits[J]. Economic Geology,1986, 81(1):1-19.
[59]Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation[J].Geochimica et Cosmochimica Atca, 1992, 156:3-20.
[60]Lowenstern J B. Dissolved volatile concentrations in an ore-forming magma[J].Geology,1994, 22(10):893-896.
[61]Ilton E S, Veblen D R. Copper inclusion in sheet-silicates from porphyry Copper deposits[J].Nature,1988, 334:516-518.
[62]Campos E, Touret J L R, Nikogosian I, et al. Over heated,Cu-bearing magmas in the Zaldivar porphyry-Cu deposit, northern Chile: geodynamic consequences[J]. Tectonophysics, 2002, 345(1/4):229-251.
[63]Ulrich T, Guenther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature,1999, 399:676-679.
[64]Meng Xiangjin, Hou Zengqian, Li Zhenqing. Sulfur and lead isotope compositions of the Qulong Porphyry Copper Deposit, Tibet: Implications for the sources of plutons and metals in the deposit[J].Acta Geologica Sinica,2006, 80(2):554-560.[孟祥金,侯增谦,李振清.西藏驱龙斑岩铜矿S、Pb同位素组成: 对含矿斑岩与成矿物质来源的指示[J]. 地质学报, 2006, 80(4):554-560.]
[65]Hattori K, Keith J D. Cont ribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA[J]. Mineralium Deposits,2001, 36:799-806.
[66]Li Jinxiang, Qin Kezhang, Li Guangming. Basic characteristics of gold-rich porphyry copper deposits and their ore sources and evolving processes of high oxidation magma and ore-forming fluid[J].Acta Petrologica Sinica,2006, 22(3): 678-688.[李金祥,秦克章,李光明.富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆—流体演化[J]. 岩石学报, 2006, 22(3):678-688.]
[67]Hou Zengqian. Porphyry Cu-Mo-Au deposits: Some new insights and advances[J].Earth Science Frontiers,2004, 11(1):95-98.[侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展[J]. 地学前缘, 2004, 11(1):131-144.]
[68]Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J].Contributions to Mineralogy and Petrology,1979, 68:107-115.
[69]Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the sierra Nevada batholith—A reeconnaissance study[J].Geology,1989, 17(9):788-791.
[70]Rye R O, Luhr J F, Wasserman M D. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon volcano,Chiapas, Mexioco[J].Journal of Vocanology and Geothermal Research,1984, 23(1):109-123.
[71]Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the island copper porphyry copper-gold-molybdenum deposit,British Columbia[J].Economic Geology,1996, 91(2):402-438.
[72]Hattori K H. High-sulfur magma,a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo,Philippines[J].Geology,1993, 21(12):1 083-1 086.
[73]Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Vilcano, Colombia in 1985[J].Journal of Vocanology and Geothermal Research,1990, 41(1):127-151.
[74]Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J].Nature, 1992, 356:426-428.
[75]Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts[C] Proceedings of the 15th Lunar and Planetary Science Conference(part2), 1985, 90:601-612.
[76]Gaetani G A, Grove L T. Partitioning of moderately siderophile elements among olivine, silicatemelt, and sulfidemelt:Constraints on core formation in the Earth and Mars[J].Geochimica et  Cosmochimica  Acta,1997, 61:1 829-1 842.
[77]Mungall J E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,2002, 30(10): 915-918.
[78]Audetat A, Pettke T, Dolejs D. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico(USA): Genetic constraints on porphyry-Cu mineralization[J].Lithos,2004, 72(3): 147-161.
[79]Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004, 431:975-978.
[80]Liang H Y, Campbell I H, Allen C, et al. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J].Mineralium Deposita, 2006, 41(2):152-159.
[81]Liang H Y, Sun W D, Su W C, et al. Porphyry copper-gold mineralization promoted by decreasing redox potential during magnetite alteration[J].Economic Geology, 2009, 104(4):587-596.
[82]Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism[J].Geophysical Monograph, 1996, 96:251-262.
[83]de Hoog J C M, Mason P R D, van Bergen M J. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia[J].Geochimica et Cosmochimica Acta,2001, 65(18):3 147-3 164.
[84]Simon A C, Pettke T, Candela P A, et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage[J].Geochimica et Cosmochimica Acta,2006, 70(22):5 583-5 600.
[85]Zajacz Z, Halter W, Pettke T. Determination of fluid/melt partition coefficients by LA-ICP-MS analys is of co-existing fluid and silicate melt inclusions: Controls on element partitioning[J].Geochimica et Cosmochimica Acta,2008, 72(8):2 169-2 197.
[86]Hamlyn P R, Keays R R, Cameron W E, et al. Precious metals in magnesian low-Ti lavas: Implicationsfor metallogenesis and sulfur saturation in primary magmas[J].Geochimica et Cosmochimica Acta,1985, 49(8):1 797-1 811.
[87]Bornhorst T J, Rose W I. Partitioning of gold in young calc-alkaline volcanic rocks form Guatemala[J].Journal of Geology, 1986, 94(3):412-418.
[88]Richards J P, McCulloch M T, Chappell B W, et al. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry[J].Geochimica et Cosmochimica Acta,1991, 55(2):565-580.
[89]Richards J P. Alkalic-type epithermal gold deposits: A review[J].Mineralogical Association of Canada Short Course Series,1995, 23:367-400.
[90]Jin Zhangdong, Li Fuchun. New progress of copper migration and precipitation mechanism during porphyry ore-forming process[J]. Mineral Resources and Geology,1998, 64(2):73-78.[金章东,李福春.斑岩型铜矿床成矿过程中铜的迁移与沉淀机制研究新进展[J]. 矿产与地质, 1998, 64(2): 73-78.]
[91]Kalakay T J, John B E, Lageson D R. Fault-controlled pluton emplacement in the Sevier fold and thrust belt of southwest Montana,USA[J].Journal of Structural Geology, 2001, 23(6):1 151-1 165.
[92]Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits[C]∥Porter T M ed. Super Porphyry Copper & Gold Deposits PGC Publishing,2005, 1:7-25.
[93]Hill K C, Kendrick R D, Crowhurstand P V, et al. Copper-gold mineralization in New Guinea: Tectonics, lineaments, thermochronology and structure[J].Australian Journal of Earth Sciences,2002, 49(3):737-752.
[94]Hou Zengqian, Pan Xiaofei, Yang Zhiming, et al. Porphyry Cu- (Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings[J].Geoscience,2007, 21:332-351.[侯增谦,潘小菲,杨志明,等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2):332-351.]
[95]Vigneresse J L. Should felsic magmas be considered as tectonic objects, just like faults or folds?[J].Journal of Structural Geology,1999, 21(8):1 125-1 130.
[96]Vigneresse J L. The role of discontinuous magma inputs in felsic magma and ore generation[J].Ore Geology Reviews, 2007, 30 (3/4):181-216.
[97]Gillian G, Christoph A, Heinrich, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit. II. Vein geometry and ore shell formation by Pressure-Driven rock    extension[J].Economic Geology,2010, 105(1):69-90.
[98]Hildreth W. Quaternary Magmatism in the Cascades: Geological Perspectives[M/OL].USGS Professional Paper,2007, 1 744.http:purl.access.gpo.gor/690/LPS97/05.
[99]Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile[J].Contributions to Mineralogy and Petrology,1988, 98(4):455-489.
[100]Luo Zhaohua, Lu Xinxiang, Guo Shaofeng,et al. Metallogenic systems on the transmagmatic fluid theory[J].Acta Petrologica Sinica, 2008, 24(12): 2 669-2 678.[罗照华, 卢欣祥, 郭少丰, 等. 透岩浆流体成矿体系[J]. 岩石学报, 2008, 24(12): 2 669-2 678.]
[101]Petford N, Clemens J D, Vigneresse J L. Application of information theory to the formation of granitic rocks[C]Bouchez J L, Hutton D, Stephens W E,eds.Granite: From Melt Segregation to Emplacement Fabrics. Dordrecht: Kluwer Academic Publishers,1997: 3-10.
[102]Vigneresse J L. Granitic batholiths: From pervasive and continuous melting in the lower crust to discontinuous and spaced plutonism in the upper crust[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2008, 97(4):311-324.
[103]Cline J, Bodnar R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt[J].Journal of Geophysical Research,1991, 96(B5):8 113-8 126.
[104]Kilinc I A, Burnham C W. Partioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars[J].Economic Geology, 1972, 67(2):231-235.
[105]Candela P A, Holland H D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J].Geochimica et Cosmochimica Acta, 1984, 48(2):373-380.
[106]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal of deposits[J].Nature, 1994, 370: 519-527.
[107]Roedder E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado[J].Economic Geology,1971, 66(1):98-118.
[108]Nash J T. Fluid Inclusion Petrology Data from Porphyry Copper Deposits and Application to Exploration[M/OL].Washington: U.S. Geology Survey,1976, 907-D: 16. 
[109]Eastoe C J. A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J].Economic Geology,1978, 73(5):721-748.
[110]Bodnar R J. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series, 1995, 23(1):139-152.
[111]Giggenbach W F. Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries[J].Economic Geology, 1992, 87(8):1 927-1 944.
[112]Giggenbach W F. The origin and evolution of fluids in magmatic-hydrothermal systems[C]Barnes H L ed. Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, Inc., 1997:739-796.
[113]Heinrich C A, Gunther D, Audetat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J].Geology,1999, 27(9):755-758.
[114]Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J].Mineralium Deposita,2005, 39(8):864-889.
[115]Pokrovski G S, Roux J, Harrichoury J C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems[J].Geology,2005, 33(8):657-660.
[116]Pokrovski G S, Borisova A Y, Harrichoury J C. The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems[J].Earth and Planetary Science Letters,2008, 266:345-362.
[117]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J].Geochimica et Cosmochimica Acta,2009, 73(18):5 406-5 427.
[118]Williams-Jones A E,  Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits[J].Economic Geology,2005, 100(7):1 287-1 312.
[119]Simon A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages[J].Geochimica et Cosmochimica Acta,2007, 71(7):1 764-1 782.
[120]Audetat A, Pettke T, Heinrich C A, et al. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J].Economic Geology,2008, 103(5):877-908.
[121]Nagaseki H, Hayashi K. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J].Geology,2008, 36(1):27-30.
[122]Wilkinson J J, Wilkinson C C, Vry V H, et al. Ore fluid chemistry in super-giant porphyry copper deposits[M]Pacrim Congress, Gold Coast, Queensland, Extended Abstracts: Melbourne. Australasian Institute of Mining and Metallurgy, 2008:295-299.
[123]Pudack C, Halter W E, Heinrich C A, et al. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina[J].Economic Geology,2009, 104(4):449-477.
[124]Seo J H, Guillong M, Heinrich C A. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits[J].Earth and Planetary Science Letters,2009, 282(1/4):323-328.
[125]Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarica volcano(Chile)[J].Earth and Planetary Science Letters,2009, 282(1/4):115-121.
[126]Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for extreme partitioning of Copper into a magmatic vapor phase[J].Science,1991, 252(5 011):1 405-1 409.
[127]Williams-Jones A E, Migdisov A A, Archibald S M, et al. Vapor-transport of ore metals[C]Hellmann R, Wood S A, eds. Water-rock Interaction:A Tribute to David A Crerar. The Geochemical Society, Special Publication,2002:279-305.
[128]Yang Zhiming, Hou Zengqian. Porphyry Cu deposits in collisional orogen setting: A preliminary genetic model[J].Mineral Deposits,2009, 28(5):515-538.[杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J]. 矿床地质, 2009, 28(5):515-538.]
[129]Fournier R O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J].Economic Geology,1999, 94(8):1 193-1 211.
[130]Roedder E. Fluid Inclusions: Reviews in Mineralogy[M].USA:Mineralogical Society of America, 1984, 12:644.
[131]Simon A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environments[J].Geochimica et Cosmochimica Acta,2004, 68(23):4 905-4 914.
[132]Shinohara H, kazahaya K, Lowenstern J B. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization[J].Geology,1995, 23(12):1 091-1 094.
[133]Du Qi. Geology of Duobaoshan Porphyry Copper Deposit[M]. Beijing:Geology Publishing House,1988:386.[杜琦. 多宝山斑岩铜矿床[M]. 北京:地质出版社, 1988:386.]
[134]Rusk B G, Reed M H, Dilles J H, et al. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J].Chemical Geology,2004, 210(1/4):173-199.
[135]Rusk B G, Reed M H, Dilles J H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana[J].Economic Geology,2008, 103(2):307-334.
[136]Rusk B G, Miller B J, Reed M H. Fluid inclusion evidence forthe formation of Main Stage polymetallic base-metal veins, Butte, Montana, USA[J].Arizona Geological Society Digest,2008, 22:573-581.
[137]Redmond P B. Magmatic-hydrothermal Fluids and Copper-gold ore Formation at Bingham Canyon[D].Utha: Stanford University, 2002:228.
[138]Redmond P B, Einaudi M T, Inan E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah[J].Geology, 2004, 32(3):217-220.
[139]Landtwing M R, Pettke T, Halter W E, et al. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry[J]. Earth and Planetary Science Letters,2005, 235(1/2):229-243.
[140]Landtwing M R, Furrer C, Redmond P B, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit.III. Zoned copper-gold ore deposition by magmatic vapor expansion[J].Economic Geology,2010, 105(1):91-118.
[141]Hedenquist J W. The ascent of magmatic fluids: Discharge versus mineralization[J]. Mineralogical Association of Canada Short Course Series,1995, 23:263-289.
[142]Hedenquist J W, Simmons S F, Giggenbach W F, et al. White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulfidation Cu and Au ore deposition[J].Geology,1993, 21(8):731-734.
[143]Hedenquist J W, Richards J P. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits[J].Reviews in Economic Geology,1998, 93:235-256.
[144]Heinrich C A, Driesner T, Stefansson A, et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J].Geology,2004, 32(9):761-764.
[145]Khashgerel B, Rye R O, Kavalieris I, et al. The sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi district,Mongolia[J].Economic Geology,2009, 104(8):1 087-1 110.
[146]Lowell D J. How Kalamazoo was Found in Case Histories of Mineral Discoveries, Vol 3, Porphyry Copper, Molybdenum, and Gold Deposits, Volcanogenic Deposits and Deposits in Layered Rock[Z]. Society Mining Metallurgy and Exploration, Colorado V Hollister Editor, 1991:33.
[147]Lowell D J. The discovery of the La Escondida Orebody[M]∥Hutchinson R V,Grauch R I, eds. Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries. Economic Geology, 1991, Monograph 8:286-288.
[148]Sillitoe R H, Gappe I M. Philippine Porphyry Copper Deposits: Geologic Settings and Characteristics[R]. CCOP Technical Report,1984.
[149]Corbett G J, Leach T M. Southwest Pacific Rim Gold-copper Systems: Structure, Alteration, and Mineralization[M]. Littletion:  Society of Economic Geologists Special Publication, 1998, 6: 240.
[150]Eastoe C J. Sulfur isotope data and the nature of the hydrothermal systems at the Panguna and Frieda porphyry copper deposits, Papua New Guinea[J].Economic Geology,1983, 78(2):201-213.
[151]Dilles J H. Petrology of the Yerington Batholith, Nevada: Evidence for evolution of porphyry copper ore fluids[J].Economic Geology,1987, 82(7):1 750-1 789.
[152]Dilles J H, Einaudi M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—A 6 km vertical reconstruction[J]. Economic Geology,1992, 87(8):1 963-2 001.
[153]Ulrich T,  Heinrich C A. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina[J].Economic Geology,2001, 96(8):1 719-1 742.
[154]Ulrich T, Gunther D, Heinrich C A. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina[J].Economic Geology, 2001, 96(8):1 743-1 774.
[155]Proffett J M. Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina[J]. Economic Geology, 2003, 98(8):1 535-1 574.
[156]Li Dapeng, Chen Yuelong, Jin Ye. Numerical simulation in subduction zone study[J].Adcances  in Earth Science,2010, 25(10):1 082-1 090.[李大鹏, 陈岳龙, 靳野. 板块俯冲带研究中的数值实验[J].地球科学进展, 2010, 25(10):1 082-1 090.]
[157]Harris A C, Golding S D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits[J].Geology,2002, 30(4):335-338.

[1] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[2] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[3] 熊欣, 徐文艺, 贾丽琼, 李骏. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264.
[4] 吉利明,李林涛,吴涛,张晓宝,周世新. 柴达木盆地始新统沟鞭藻及其油源意义[J]. 地球科学进展, 2007, 22(3): 221-226.
[5] 秦建华;冉敬;沈敢富;杜谷. 喜马拉雅河流Sr同位素异常源岩研究现状及研究进展[J]. 地球科学进展, 2006, 21(3): 262-268.
[6] 秦建华,冉敬,沈敢富,杜谷. 喜马拉雅河流Sr同位素异常源岩研究现状及研究进展[J]. 地球科学进展, 2006, 21(03): 262-268.
[7] 陈启林;周洪瑞;李相博;. 蒙甘青地区早白垩世原型盆地特征及其对烃源岩分布的控制[J]. 地球科学进展, 2005, 20(6): 656-663.
[8] 陈中红;查明. 烃源岩排烃作用研究现状及展望[J]. 地球科学进展, 2005, 20(4): 459-466.
[9] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[10] 郑军卫;刘文汇;史斗. 塔里木盆地深层气勘探潜势[J]. 地球科学进展, 2004, 19(5): 802-807.
[11] 王奖臻,李朝阳,胡瑞忠. 斑岩铜矿研究的若干进展[J]. 地球科学进展, 2001, 16(4): 514-519.
[12] 倪志耀,王仁民,袁建平.

元古宙蛇绿岩研究中有关问题的讨论[J]. 地球科学进展, 1999, 14(5): 468-474.

[13] 涂建琪,金奎励. 表征海相烃源岩有机质成熟度的若干重要指标的对比与研究[J]. 地球科学进展, 1999, 14(1): 18-23.
[14] 高合明. 斑岩铜矿床研究综述[J]. 地球科学进展, 1995, 10(1): 40-46.
[15] 刘大锰. 有机岩石学的研究现状与进展[J]. 地球科学进展, 1994, 9(3): 18-23.
阅读次数
全文


摘要