地球科学进展 ›› 2002, Vol. 17 ›› Issue (1): 91 -95. doi: 10.11867/j.issn.1001-8166.2002.01.0091

综述与评述 上一篇    下一篇

金刚石中氢的研究及其意义
杨志军 1,2,彭明生 2,苑执中 2   
  1. 1.中国科学院广州地球化学研究所,广东 广州 510640;2.中山大学地球科学系,广东 广州 510275
  • 收稿日期:2001-03-26 修回日期:2001-06-14 出版日期:2002-12-20
  • 通讯作者: 杨志军(1971-),男,江西临川人,博士生,主要从事矿物材料与矿物物理方面的研究.E-mail:yzjdoctor@163.net E-mail:yzjdoctor@163.net
  • 基金资助:

    广东省自然科学基金项目“金刚石中氢的赋存状态及其应用研究”(编号:980269)资助.

THE RESEARCH OF HYDROGEN IN DIAMOND AND ITS SIGNIFICANCE

YANG Zhijun 1,2,  PENG Mingsheng 2, YUAN Zhizhong 2   

  1. 1.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,China;2.Department of Geoscience, Zhongshan University, Guangzhou 510275, China
  • Received:2001-03-26 Revised:2001-06-14 Online:2002-12-20 Published:2002-02-01

含氢对于天然与高温高压合成金刚石体内而言是固有的,但是对CVD金刚石来说并非固有。氢可以稳定存在于晶格位、键心、反键心及四面体空隙等金刚石的结构属性中,也可以存在于显微流体包裹体中。即便是在 1473K下淬火,氢在金刚石中也并不发生迁移或扩散,表明氢在金刚石结构中是自陷的。金刚石中的氢的研究对于地幔矿物学及材料科学等均有重要理论意义和实际意义。

Hydrogen is an essential impurity in diamond. The tendency of hydrogen concentration shows hydrogen in the bulk is intrinsic to natural and HPHT synthetic diamond, but not to CVD synthetic diamond. The result of modern measure technology (vibration spectroscopy) measurement has proved that the chemical states of hydrogen include C-H bond, H2O, hydrogen molecule, -OH and N-H bond in the bulk of diamond. In addition, The research of micro-inclusions of diamond implies HF and H+ will be other chemical states of hydrogen. The research of location which hydrogen stays in diamond structure has concluded that hydrogen is firmly fixed in diamond in the form of lattice site, bond-centered site, anti-bond centered site and tetrahedral interstitial site, also anchored in the micro-inclusions of diamond in the form of H2O and CH4 etc.The sequence of stabilization is C-H bond> anti-bond centered site> bond-centered site > tetrahedral site. The research of dynamic mechanism of hydrogen suggest that Annealing the diamond up to 1473K produces no evidence whatsoever of any movement of the implanted hydrogen, so we forced to conclude that the hydrogen is self-trapping in the bulk of diamond. The nuclear probes technology (especially ERDA) is l immediate and sensitive in the study of the hydrogen concentration in diamond and the vibration spectroscopy (especially FTIR) is effective in the study of chemical states of hydrogen. The research of hydrogen in diamond has promoted the development in the mantle's mineralogy, material sciences and gemology etc.

中图分类号: 

[1] Field J E, The Properties of Natural and Synthetic Diamond[M]. London:Academic Press,1979.1-80.
[2] Bibby D M. Impurities in natural diamond[J]. Chem Phys Carbon,1982,18:1-91.
[3] Woods G S, Collins A T. Infrared absorption spectra of hydrogen complexes in type I diamond[J]. J Phys Chem Solid, 1983,44(5):471-475.
[4] Smallman C G, Connell S H, Madiba C C P, et al.  287 trapping of implanted hydrogen in type Ia diamond[J]. Nucl Inst Method, Phys Res B, 1996,118:688-692.
[5] Field J E, The Properties of Natural and Synthetic Diamond[M]. London:Academic Press,1992.36-41,81-179.
[6] Liao C, Wang Y, Yang S. Depth profiles of boron and hydrogen in boron-doped diamond films and related performance characteristics[J]. Diamond and Related Materials,1999,8:1 229-1 233.
[7] Collins A T.  Spectroscopy of defects and transition metals in diamond[J]. Diamond and Related Materials,2000,9:417-423.
[8] Machi I Z, Bultler J E, Connell S H, et al. Diffusion characteristics of hydrogen in diamond[J]. Diamond and Related Materials,1999,8:1 611-1 614.
[9] Peng Minsheng, Zheng Zhe. Consideration on carbon and carbon materials[J]. Bulletin of Mineralogy Petrology and Geochemistry, 1999,18(4):211-212.[彭明生,郑辙. 有关碳和碳材料的几点思考[J]. 矿物岩石地球化学通报,1999,18(4):211-212.]
[10]Peng Mingsheng. Improving Treatment and Enhancement of Gem and Modern Measure technology[M]. Beijing: Science Press,1995. [彭明生. 宝石优化处理与现代测试技术[M]. 北京:科学出版社,1995.]
[11]Sellschop J P F,  Connell S H.  Carbon and its analysis[J]. Nucl Inst Mehod,Phys Res B,1998,136-138:1 253-1 258.
[12]Connell S H, Sellschop J P F, Butler J E, et al. A study of the mobility and trapping of minor hydrogen concentrations in diamond in three dimensions using quantitative ERDA microscopy[J].  Diamond and Related materials,1998,7:1 714-1 718.
[13]Peng Mingsheng, Yang Zhijun, Lin Bing. Bonded hydrogen in diamond[J]. Geological Journal of China Universities, 2000,6(2):145-148. [彭明生,杨志军,林冰.金刚石中的成键氢[J].高校地质学报,2000,6(2):145-148.]
[14]Chen Feng, Ding Zhenhua, Guo Jiugao, et al. Hydrogen molecule in diamond[J]. Chinese Science Bulletin, 1994,39(15):1 403-1 404.[陈丰,丁振华,郭九皋等. 金刚石中的分子氢[J]. 科学通报,1994,39(15):1 403-1 404.]
[15]Roger D Aines,George R Rossman. Water in minerals: A peak in the infrared[J]. J Geophys Research,1984,89 (B6):4 059-4 071.
[16]Navon O, Hutcheon I D,Rossman G R,et al. Mantle-derived fluids in diamond micro-inclusions[J]. Nature, 1988,335(6195): 784-789.
[17]Zhen Jianping, Lu Fengxiang. Research of fluid inclusions in diamond[J]. Chinese Science Bulletin, 1994,39(3):253-256.[郑建平,路凤香. 金刚石的流体包体研究[J]. 科学通报, 1994,39(3):253-256.]
[18]Cheng Meihua, Lu Fengxiang, Di Jingru, et al. The analysis of cathodoluminescence and Infra-red spectroscopy of diamond in Wafangdian diamond deposit, Niaoning province[J].Chinese Science Bulletin,2000,45(13):1 424-1 428.[陈美华,路凤香,狄敬如,等.辽宁瓦房店金刚石的阴极发光和红外光谱分析[J].科学通报,2000,45(13):1 424-1 428.]
[19]Davies G,Collins A T,Spear P. Sharp infra-red absorption lines in diamond[J]. Solid State Comm,1984,49(5): 433-436.
[20]Briddon P,  Jones R, Lister G M S.  Hydrogen in diamond[J]. J Phys C, 1988,21:1 027-1 031.
[21] Mainwood A, Stoneham A M.  Interstitial muons and hydrogen in diamond and silicon[J]. J Phys C,1984,17:2 513-2 524.
[22]Guo Jiugao. Some advance of natural diamond research in China[A]. Chinese Geological Exploration[C]. Beijing: Peking University Press, 1990.240-249. [郭九皋.中国天然金刚石研究的某些进展[A].中国地质科学探索[C].北京:北京大学出版社,1990.240-249.]
[23] Maclear R D,Connell S H, Doyle B P,et al. Quantitative trace hydrogen distributions in natural diamond using 3D-micro -ERDA microscopy[J]. Nucl Inst Mehod, Phys Res B,1998,136-138:579-582.

[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[3] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[4] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[5] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[6] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川 M S8.0地震破裂带土壤气中H 2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[7] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[8] 李琦, 徐亮, 匡冬琴. 阿姆河右岸区块气藏酸气的成因与分布影响因素[J]. 地球科学进展, 2017, 32(11): 1183-1192.
[9] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[10] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[11] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[12] 袁子能,邢磊,张海龙,赵美训. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.
[13] 张杰,贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009, 24(8): 874-881.
[14] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[15] 杨红梅,王成善. 古高程计:氢氧同位素的新应用[J]. 地球科学进展, 2007, 22(9): 960-968.
阅读次数
全文


摘要