地球科学进展 ›› 2000, Vol. 15 ›› Issue (5): 553 -540. doi: 10.11867/j.issn.1001-8166.2000.05.0553

综述与评述 上一篇    下一篇

河流稀土元素地球化学研究进展
王中良 ,刘丛强 ,徐志方 ,韩贵琳 ,朱建明 ,张 劲   
  1. ①中国科学院地球化学研究所环境地球化学国家重点实验室,贵州 贵阳 550002;②中国科学院地质与地球物理研究所,北京 100101;③Department of Environmental Biology and Chemistry,Faculty of Science,Toyama University,Gofuku 3190,Toyama 930-8555,Japan
  • 收稿日期:1999-11-08 修回日期:2000-02-29 出版日期:2000-10-01
  • 通讯作者: 王中良(1970-),男,山东省巨野县人,博士研究生,主要从事环境地球化学和地表水体地球化学研究。
  • 基金资助:

    国家杰出青年科学家基金项目“流体-岩石反应体系中稀土元素和钇的地球化学”(编号:49625304)和攀登计划项目“地质流体作用及其成矿效应研究”(编号:95-预-39)资助。

ADVANCES IN RESEARCH ON GEOCHEMISTRY OF RARE EARTH ELEMENTS IN RIVERS

WANG Zhong-liang , LIU Cong-qiang , XU Zhi-fang ,HAN Gui-lin , ZHU Jian-ming , ZHANG Jin   

  1. ①State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,CAS,Guiyang550002,China;②Institute of Geology and Geophysics,CAS,Beijing100101,China;③Department of Environmental Biology and Chemistry,Faculty of Science,Toyama University,Gofuku3190,Toyama930-8555,Japan
  • Received:1999-11-08 Revised:2000-02-29 Online:2000-10-01 Published:2000-10-01

河流系统中,稀土元素(REE)受区域地质背景、风化作用、溶液化学以及水与颗粒物相互作用等因素的影响发生分异。河流悬浮物显示轻稀土(LREE)适度富集;河水显示重稀土(HREE)富集,或在HREE富集的基础上又有适度的中稀土(MREE)富集;与其它微量元素相比,REE在河水与颗粒物之间有较小的分配系数(K≈10-6);河流沉积物多显示平坦的REE配分模式。

Rare earth elements (REE) patterns of dissolved phase, suspended materials and sediments in rivers were established based on data referred from recent studies and our work. There are a number of factors or processes such as basin geology, weathering, solution chemistry and water-particle interaction controlled the geochemical behavior of REE in rivers. These factors and processes induced partition and fractionation of REE between suspended particles and solution. The shale-normalized REE patterns of suspended particles in rivers showed moderate light-REE (LREE) enrichment, and the solution of river waters showed significant heavy-REE (HREE) enrichment or convex curves that middle-REE (MREE) slight enrichment piled upon the HREE enrichment. The partition coefficient of REE between the suspended particles and solution (K≈10-6) was smaller comparing with most of other trace metals in rivers. The sediments in rivers showed a flat shale-normalized REE patterns.

中图分类号: 

[1] Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters[J]. Earth Planet Sci Lett, 1996,143:245~255.
[2] DupréB, Gaillardet J, Rousseau D,et al. Major and trace elements of river-borne material:the Congo Basin[J]. Geochimca Cosmochimica Acta, 1996,60:1 301~1 321.
[3] Elderfield H R, Upstill-Goddard, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimca Cosmochimica Acta, 1990, 54:971~991.
[4] Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth Planet Sci Lett, 1988, 89:35~47.
[5] Keasler K M, Loveland W D. Rare earth elemental concentrations in some Pacific Northwest rivers[J]. Earth Planet Sci Lett, 1982, 61:68~72.
[6] Sholkovitz E R. Chemical evolution of rare earth elements:fractionation between colloidal and solution phases of filtered river water[J]. Earth Planet Sci Lett, 1992, 114:77~84.
[7] Sholkovitz E R. The geochemistry of rare earth elements in the Amazon river estuary[J]. Geochimca Cosmochimica Acta,1993, 57:2 181~2 190.
[8] Tanizaki Y, Shimokawa T, Nakamura M. Physicochemical speciation of trace elements in river waters by size fractionation[J]. Environ Sci Technol, 1992, 26:1 433~1 444.
[9] 王琦,于志刚,吴莹,等.罗纳河中悬浮物质的痕量元素的研究[J].海洋与湖沼, 1998, 29(2):197~205.
[10] Gouveia M A, Araújo M F D, Dias J M A. Rare earth element distribution in sediments from the Minho river and estuary (Portugal)—a preliminary study [J]. Chem Geol,1993, 107:379~383.
[11] Ross G R, Guevara S R, Arribére M A. Rare earth geo-chemistry in sediments of the Upper Manso River Basin, Río Negro, Argentina[J]. Earth Plannet Sci Lett, 1995, 133:47~57.
[12] Sholkovitz E R, Piepgras D J, Jacobsen S B. The pore water chemistry of rare earth elements in Buzzards bay sediments[J]. Geochimca Cosmochimica Acta, 1989, 53: 2 847~2 856.
[13] Bluth G J S, Kump L R. Lithologic and climatologic controls of river chemistry[J]. Geochimca Cosmochimica Acta, 1994,58:2 341~2 359.
[14] 陈衍景,邓健,胡桂兴.环境对沉积物微量元素含量和配分型式的制约[J].地质地球化学, 1996, 3:97~105.
[15] Gouveia M A, Prudêncio M I, Figueirdo M O,et al. Behavior of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal[J]. Chem Geol,1993, 107:293~296.
[16] Prudêncio M I, Braga M A S, Gouveia M A. REE mobilization, fractionation and precipitation during weathering of basalts[J]. Chem Geol, 1993, 107:251~254.
[17] Koeppenkastrop D, De Carlo E H. Uptake of rare earth elements from solution by metal oxides[J]. Environ Sci Technol, 1993, 27:1 796~1 802.
[18] Koeppenkastrop D, De Carlo E H, Roth M. A method to investigate the interaction of rare earth elements in aqueous solution with metal oxides[J]. J Radi Nucl Chem, 1991, 152:337~346.
[19] Davis J A. Adsorption of natural dissolved organic matter at the oxide/water interface[J]. Geochimca Cosmochimica Acta, 1982, 46:2 381~2 393.
[20] Cantrell K J, Byrne R H. Rare earth element complexation by carbonate and oxalate ions[J]. Geochimca Cosmochimica Acta, 1987, 51:597~605.
[21] Johannesson K H, Berry Lyons W. The rare earth element geochemistry of Mono Lake water and the importance of carbonate complexing[J]. Limnol Oceanogr, 1994, 39:1 141~1 154.
[22] Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium 1 review of available low-temperature date for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chem Geol, 1990, 82:159~186.
[23] Byrne R H, Lee J H, Bingler L S. Rare earth element complexation by PO3-4ions in aqueous solution[J]. Geochimca Cosmochimica Acta, 1991, 55:2 729~2 735.
[24] Johannesson K.H. Berry Lyons W, Yelken M A. Geochemistry of rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: complexation behavior and middle rare-earth elements enrichments[J]. Chem Geol, 1996, 133:125~144.
[25] Wang Z L, Liu C Q. Two-stage correlation between pH and REE concentrations and patterns in rivers[J]. Chinese Science Bulletin, 1999, 44(Sup 2):106~107.
[26] Millero F J. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength[J].Geochimca Cosmochimica Acta, 1992, 56:3 123~3 132.
[27] Sholkovitz E R, Church T M, Arimoto R. Rare earth element composition of precipitation, precipitation particles,and aerosols[J]. J Geophy Res, 1993, 98:20 587~20 599.
[28] Thirlwall M F. A triple-filament method for rapid and precise analysis of rare-earth elements by isotope dilution[J].Chem Geol, 1982, 35:155~166.
[29] Shabani M B, Akagi T, Shimizu H,et al. Determination of trace Lanthanides and Yttrium in seawater by Inductively Coupled Plasma Mass Spectrometry after preconcentration with solvent extraction and back-extraction[J]. Anal Chem,1990, 62:2 709~2 714.

[1] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[2] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[3] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[4] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[5] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[6] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[7] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[8] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[9] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[10] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[11] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[12] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[13] 邓伟, 赵伟, 刘斌涛, 南希, 孔博. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
[14] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[15] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
阅读次数
全文


摘要