地球科学进展 ›› 1995, Vol. 10 ›› Issue (4): 330 -335. doi: 10.11867/j.issn.1001-8166.1995.04.0330

干旱气候变化与可持续发展 上一篇    下一篇

地幔交代作用:研究进展、问题及对策
喻学惠   
  1. 中国地质大学  武汉  430074
  • 收稿日期:1994-07-05 修回日期:1994-08-09 出版日期:1995-08-01
  • 通讯作者: 喻学惠
  • 基金资助:

    国家自然科学基金项目“碳酸岩—碱性岩岩浆作用的成因的矿物—地球化学模式”(编号:49273169)资助.

MANTLE METASOMATISM:PROGRESSES, PROBLEMS AND COUNTERMEASURE

Yu Xuehui   

  1. China University of Geosciences, Wuhan  430074
  • Received:1994-07-05 Revised:1994-08-09 Online:1995-08-01 Published:1995-08-01

有关地幔交代作用的研究始于70年代早期。近20年来研究工作的贡献是使人们对与地幔演化和不均一性有关的地幔交代作用特征和交代作用机制有了更多的了解。地幔交代作用很复杂,它取决于交代作用发生的时间、构造环境、交代介质的种类以及与不同深度地幔内各种地质事件有关的流体的组成。进一步深入开展有关交代作用成因、机制及其与各种地质事件关系的研究,对于深入认识岩石圈地幔的演化和不均一特征具有十分重要的意义。对不同构造环境中的不同包体类型进行深入研究,为地幔交代作用提供广泛约束。将传统的地质学、岩石学的研究与地球化学、地球物理学以及现代测试技术相结合,很可能为解决交代作用成因、机制及交代作用与岩浆作用之间的时间先后问题,交代作用与地质事件的关系问题提供有效的方法和途径。

This paper is a review for metasomatic processes in the mantle. The studies pertinent to mantle metasomatism began in the early 1970s. Since that time the contributions of the studies to our understanding of the nature and the mechanism of the mantle metasomatism involved in the evolution and heterogeneity of the mantle has been considerable.All of the studies show that mantle metasomatism may be very complex depending on the time, place, the type of agent and the nature of the fluid with various decoupled and cyclic events occurring at different depths of the mantle. Hence, future study pertinent to the generation, mechanism and conditions of the metasomatic processes in the mantle will undoubtedly prove to be as important for understanding depthly the evolution and heterogeneity of the mantle as those covered in this review. It may be very effective methods and ways for solving the generation, mechanism and time relationships between magmatism and metasomatism, to study depthly xenoliths from different place and type for metasomatism constraints, to combine traditional geology and petrology with modern test technique, and to combine subjects containing geology, petrology, geochemistry with geophysics.

[1] Dawson J B. Contrasting types of upper mantle metasomatism, In: Kornoprost J (ed).Kimberlites II: The mantle and crust-mantle relationships.Amsterdam:Elsevier,1984.289-294.
[2] Harte B. Metasomatic events recorded in mantle xenoliths: an overview, In: Nixon P H (ed). Mantle Xenoliths. John Wiley & Sons Ltd, 1987.625-640.
[3] Wyllei P J.Metasomatism and fluid generation in mantle xenoliths, In: Nixon P H (ed). Mantle Xenoliths. John Wiley & Sons Ltd,1987.599-621.
[4] Menzies M A. Mantle metasomatism. London: Academic Press,1987.21-39.
[5] Roden M F etal.Mantle merasomarism.Nature,1986,320:34-38.
[6] Lloyd F E et al. Regional K-merasomatism in the mantle beneath the west brance of the east African Rift: alkali clinopyroxenite xenoliths in highly potassic magmas. In: Nixon P H (ed).Mantle Xenoliths. John Wiley & Sons Ltd,1987.641-659.
[7] Eggler D H et al. Solubility of major and trace elements in mantle metasomatic fluids: experimental cons-traints, In: Menzies M A (ed).Mantle Merasomatism.London:Academic Press,1987.
[8] Bergman S C et al. CO2-CO fluid inclusions in a composite peridotite xenolith: implications for upper mantle oxygen fugacity. Contrib Mineral Petrol,1984,85:1-13.
[9] Harggerty S E.Metasomatic mineral titanates in upper mantle xenoliths. In: Nixon P H (ed). Mantle Xenoliths. John Wiley & Sons Ltd,1987.671-690.
[10] Edger A D. Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos,1992,28:205-220.
[11] Ballhaus C et al. Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol,1993,144:331-348.
[12] Bodinier J L et al.Mechanisms of mantle metasomatism:geochemical evidence from the Lherz Orogenic peridotite. J Petrol,1990,90:597-628.
[13] Hansteen T H et al. Fluid and silicate glass inclusion in ultramafic and mafic xenoliths from Hierro, Canary Islands: implication for mantle metasomarism.Contrib Mineral Petrol,1991,107:242-254.
[14] White B S et al. Solidus reactions insynthetic lherzolite-H2O-CO2 from 20-30kb, with applications to melting and metasomatism. J Volcan Geotherm,1992,50:117-130.
[15] Newton R C. Metamorphic fluids in the deep crust.Annual Review of Earth Planet Sciences,1989,18:1-11.
[16] 周新华.初论中国东部大陆地幔地球化学特征.矿物岩石地球化学通讯,1987,(2):52-52.
[17] 周新华等.中国东部新生代玄武岩同位素体系和地幔化学区划.见:刘若新主编.中国新生代火山岩年代学和地球化学.北京:地震出版社,1992.366-391.
[18] 张明等.海南岛新生代玄武岩微量元素和同位素地球化学.见:刘若新主编.中国新生代火山岩年代学和地球化学.北京:地震出版社,1992.246-268.
[19] 涂勘等.南海海盆新生代玄武岩的地球化学特征与Dupal型同位素异常区的成因讨论.见:刘若新主编.中国新生代火山岩年代学和地球化学.北京:地震出版社,1992.269-284.
[20] 喻学惠.甘肃好梯超镁铁煌斑岩中深源包体和巨晶.地质科技情报,1991,10(增刊).
[21] 曹荣龙等.浙江西垄地幔岩包体中流体及熔融包裹体的成因和意义.见:中国上地幔特征与动力学论文集.北京:地震出版社,1990.34-44.
[22] 刘若新等.地幔流体包裹体:地幔部分熔融和化学非均一性的新证据.见:刘若新主编.中国新生代火山岩年代学与地球化学.北京:地震出版社,1992.292-399.
[23] 杜乐天.幔汁假说.矿物岩石地球化学通讯,1990,(1):40-42.

[1] 刘显凡,赵甫峰,李春晖,楚亚婷,邓碧平,宋祥峰,张民. 深部过程中地幔流体现实微观踪迹的实验证据[J]. 地球科学进展, 2012, 27(10): 1161-1166.
[2] 张景廉,王先彬,曹正林. 热液烃的生成与深部油气藏[J]. 地球科学进展, 2000, 15(5): 545-552.
[3] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[4] 王岳军,韩吟文,郑海飞. 地幔地球化学研究综述[J]. 地球科学进展, 1995, 10(6): 572-576.
[5] 曹荣龙,朱寿华. 地幔流体与成矿作用[J]. 地球科学进展, 1995, 10(4): 323-329.
阅读次数
全文


摘要