地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 653 -658. doi: 10.11867/j.issn.1001-8166.2002.05.0653

研究论文 上一篇    下一篇

论大气二氧化碳温室效应的饱和度
刘玉芝 1, 肖稳安 1, 石广玉 2   
  1. 1. 南京气象学院, 江苏 南京 210044;2.中国科学院大气物理研究所, 北京 100029
  • 收稿日期:2002-03-18 修回日期:2002-05-31 出版日期:2002-12-20
  • 通讯作者: 刘玉芝(1976-),女,新疆奇台县人,硕士研究生,主要从事大气物理/气候变化方面的研究.E-mail:yzliuxj@msn.com E-mail:yzliuxj@msn.com
  • 基金资助:

    中国科学院创新工程重要方向项目“亚洲沙尘形成、输送机制及辐射强迫研究”(编号:KZCX2-305);国家重点基础研究发展规划项目(编号:G2000048703)资助.

ON THE SATURATION OF GREENHOUSE EFFECT DUE TO ATMOSPHERIC CARBON DIOXIDE

LIU Yu-zhi 1, XIAO Wen-an 1, SHI Guang-yu 2   

  1. 1.Nanjing Institute of Meteorology, Nanjing 210044, China;2. Institute of Atmospheric Physics, CAS, Beijing 100029, China
  • Received:2002-03-18 Revised:2002-05-31 Online:2002-12-20 Published:2002-10-01

利用最新版本的大气分子吸收光谱资料HITRAN2000,用精确的逐线积分算法,计算了大气CO2浓度变化后产生的辐射强迫。在此基础上,研究了CO2温室效应的饱和度以及影响CO2辐射强迫的各种因子。主要结论如下:地面温度愈高,一般辐射强迫也愈大,但辐射强迫并不完全取决于地面温度,它还受大气温度廓线的强烈影响;研究的 6种模式大气中,吸收带重叠对热带大气的CO2辐射强迫影响最大,对亚极冬季大气的影响最小;与长波辐射强迫相比,短波辐射强迫的贡献很小;CO2的温室效应在15μm带中心等波段确实已经达到饱和,但在其它(15μm带两翼,10μm,5.2μm带等)波段远未达到饱和,在最近的将来也不会达到饱和。

Using HITRAN 2000, the updated absorption line data of atmospheric molecules, and an exact line-by-line algorithm, we have calculated the radiative forcing (in turn the greenhouse effect) due to the changes in concentration of atmospheric carbon dioxide. Based on the comparison among radiative forcing resulted from various concentration of atmospheric CO2, the saturation of greenhouse effect due to carbon dioxide and the spectral distribution of the saturation have been examined in the paper. The content and major conclusions of the paper are the follows:
(1) Six model atmospheres: Tropical Atmosphere (TRP), Middle Latitude Summer Atmosphere (MLS), Middle Latitude Winter Atmosphere (MLW), Subarctic Summer Atmosphere (SAS), Subarctic Winter Atmosphere (SAW), and US Standard Atmosphere (USSTD), are chosen to study the effects of surface temperature and temperature profile on the radiative forcing. The results show that, in general, the radiative forcing is larger when the surface temperature is higher. However, the radiative forcing depends not only on the surface temperature, but also the atmospheric temperature profile.
(2) The radiative forcing due to carbon dioxide includes both of the contributions from the short-wave and long-wave. The solar zenith angle, duration of daylight and the solar irradiance on the top of the atmosphere are calculated in order to compute the short-wave radiative forcing for each model atmosphere. Compared with the long-wave radiative forcing, the solar short-wave radiative forcing is very small.
(3) Effects of overlapping of the absorption bands on the radiative forcing have been examined for different model atmosphere. We found that the band overlapping has significant effect on the radiative forcing and it depends on the model atmosphere. The effect is the largest for the TRP atmosphere and smallest for the SAW atmosphere. 
(4) The saturation of greenhouse effect due to carbon dioxide and its spectral distribution are studied through calculating respectively the radiative forcing due to two times, four times and eight times of present concentration of atmospheric carbon dioxide. The results show that the greenhouse effect due to carbon dioxide is saturated in the center of CO2 15μm band, indeed, but it is never saturated and will not be saturated in the near future for the wings of 15μm band and the other bands.

中图分类号: 

[1]  Houghton J T, Ding Y, Griggs D J, et al eds. IPCC 2001: Climate Change 2001: The Scientific Basis[M]. Cambridge: Cambridge University Press, 2001.
[2]  Shine K P, Fouquart Y, Ramaswamy V, et al. Radiative Forcing, Chapter 2.3[A]. In: Houghton J T, et al,eds. Climate Change 1994, Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios[C]. Cambridge: Cambridge University Press, 1995. 174-175.
[3]  Shi Guangyu Y. An Accurate Calculation and Representation of the Infrared Transmission Function of the Atmospheric Constituents[D]. Tohoku University of Japan, 1981.
[4]  Shi Guangyu. On the K distribution models in the atmospheric radiation calculations[J].  Chinese Journal of Atmospheric Sciences, 1998, 22(6): 659-676. [石广玉. 辐射计算的K -分布模式[J]. 大气科学,1998,22(6): 659-676.]
[5]  Zhang Hua, Shi Guangyu. A fast and efficient line-by-line calculation method for atmospheric absorption[J].Chinese Journal of Atmospheric Sciences, 2000, 24(1): 111-121. [张华,石广玉. 一种快速高效的逐线积分大气吸收计算方法[J].大气科学,2000,24(1): 111-121.]
[6]  Goody R M, Yung Y L. Atmospheric Radiation (2nd) [M]. New York,Oxford: Oxford University Press, 1989.
[7]  McClatchey R A, Fenn R W, Selby J E A,et al.Optical Properties of Atmosphere (3rd) [M]. Cambridge:  Air Forca Systems Command, United States Air Force, 1973.

[1] 夏祥鳌;王明星. 气溶胶吸收及气候效应研究的新进展[J]. 地球科学进展, 2004, 19(4): 630-635.
[2] 钱 云,符淙斌,王淑瑜. 沙尘气溶胶与气候变化[J]. 地球科学进展, 1999, 14(4): 391-394.
[3] 罗云峰,周秀骥,李维亮. 大气气溶胶辐射强迫及气候效应的研究现状[J]. 地球科学进展, 1998, 13(6): 572-581.
[4] 付培健,王世红,陈长和. 探讨气候变化的新热点:大气气溶胶的气候效应[J]. 地球科学进展, 1998, 13(4): 387-392.
[5] 钱云,符淙斌. SO 2排放、硫酸盐气溶胶和气候变化[J]. 地球科学进展, 1997, 12(5): 440-446.
阅读次数
全文


摘要