地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 499 -506. doi: 10.11867/j.issn.1001-8166.2011.05.0499

综述与评述 上一篇    下一篇

油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展
魏小芳 1,2,罗一菁 2*,刘可禹 1,3,帅燕华 1   
  1. 1.中石油勘探开发研究院提高采收率国家重点实验室, 北京100083;
    2.中国石油大学(北京)重质油实验室,北京102249;
    3.CSIRO Petroleum, P.O. Box 1130, Bentley, WA 6102, Australia
  • 收稿日期:2010-05-05 修回日期:2011-02-13 出版日期:2011-05-10
  • 通讯作者: 罗一菁(1979-),女,安徽肥东人,讲师,主要从事微生物分子生物研究. E-mail:luoyijing@cup.edu.cn
  • 基金资助:

    国家自然科学基金项目“生物气形成的母质来源研究”(编号:40873031);中国石油创新基金项目“难动用资源生物成气的可行性研究”(编号:2009D-5006-01-01)资助.

Research Progress on the Mechanism and Potential Application of CH 4 Bioconversion from CO 2 in Oil and Gas Reservoirs

Wei Xiaofang 1,2, Luo Yijng 2, Liu  Keyu 1, 3, Shuai Yanhua 1   

  1. 1.State Key Laboratory of EOR, Research Institute of Petroleum Exploration & Development, CNPC, Beijing100083,China; 2.China University of Petroleum (Beijing) Heavy Oil Laboratory,Beijing102249, China;3.CSIRO Petroleum, P.O. Box 1130, Bentley, WA 6102, Australia
  • Received:2010-05-05 Revised:2011-02-13 Online:2011-05-10 Published:2011-05-10

埋存CO2生物转化CH4技术是利用油、气藏中内源微生物,以埋存的CO2为底物,通过CO2生物还原途径合成CH4的生物技术。此技术因兼备CO2减排的环保意义、生物合成CH4的再生能源意义、延长油气藏寿命和潜在经济收益等优势有着广泛应用前景。CO2的捕集、埋存和油气藏生物多样性为此技术的实施提供了可行性。油藏中低矿化度的地层水中存在产H2和CH4的微生物,一定的成岩阶段生物气藏成因主要源于代谢CO2/H2的甲烷菌。因此,一定条件下油气藏内源微生物能够生物转化CO2。但是,油气藏埋存CO2生物转化CH4的实现受到各种条件的制约,包括:发酵菌群、产H2菌群和甲烷菌群之间的合作关系;甲烷菌群结构是否合理;甲烷菌和硫酸盐还原菌两大菌群之间的竞争和共代谢关系;以及CO2还原需要的H2来源等。相对于已知的代谢途径,油气藏中CO2还原途径可能更加复杂。因此,无论是微生物学家还是石油工程师,通过调控油气藏参数来实现生物合成CH4还是一个很大的挑战。目前,埋存CO2生物转化甲烷处于研究的实验室探索阶段,需要突破的瓶颈是寻找合适的油气藏、激活内源微生物实现CH4的再生,达到有经济意义的CH4转化速率和转化率。尽管埋藏CO2生物转化CH4是一个仅有10年研究历史的新技术,相信不久的将来,此项生物技术的广泛应用将会为人类可再生能源和CO2减排做出贡献。

The bioconversion of CH4from the stored CO2 is a biotechnological solution that the injected CO2 is metabolized by indigenous microbes in depleted oil or gas reservoirs to produce CH4 by CO2 bioreduction pathway. It is potential applied and promising technology due to its environmental friendship for CO2 storage and sequestration, renewable energy of biogas CH4, extended oil and gas reservoirs development period, and the potential profit for enhanced gas or oil recovery. The CO2 Capture & Storage project and microbial diversity of reservoirs offer the solution feasibility. Hydrogenotrophic mesophilic or thermophilic methanogens are known to be common inhabitants in slightly saline formation water in oil and gas reservoirs. The distribution of CO2/H2 methanongens of biogas reservoirs changes with diagenetic stages. It has been shown that CO2 can be potentially bioconverted to CH4 in reservoirs under certain conditions. However, oil and gas reservoirs are complicated systems and the bioconversion is constrained by the relationships among the methanogens, fermentative bacteria and hydrogenproducing bacteria. The methanogen community structure and the cometabolization and competition between the two communities of Sulfate Reduction Bacteria (SRB) and methanogens may also impact the CO2 reduction. Compared to the discovered knowledge that CO2 bioreduction pathway is permissible, the process may be quite complicated to be realized in reservoirs. It is difficult to realize the CO2 bioreduction pathway without synthetic H2 supply. It is still a big challenge for both microbiologists and petroleum engineers to realize CH4 bioconversion from CO2 by parameters control in reservoirs. At present, the CO2 reduction research is at experimental stage in the laboratory, the breakthrough is to activate the suited reservoirs' microorganism consortium to realize the CH4 bioconversion in right way, to probe the profitable CH4 bioconversion rate and production velocity. Though the solution of CH4 bioconversion from injected CO2 in depleted oil and gas reservoirs is a fresh technique with less than ten years research history, it is believed that it is quite promising and will be applied for renewable energy and CO2 sequestration in the near future.

中图分类号: 

[1]Yang Hongqun, Xu Zhenghe, Fan Maohong,et al. Progress in carbon dioxide separation and capture: A review[J].Journal of Environmental Sciences,2008, 20:14-27.
[2]Qian Bozhang, Zhu Jianfang. Present situation together with foreground that CO2  sequestrate and drive oil in the world[J]. Energy Environmental Protection,2008, 22(1): 1-3.[钱伯章, 朱建芳. 世界封存CO2驱油的现状与前景[J]. 能源环境保护, 2008, 22(1): 1-3.]
[3]Cheng Changhui. Analysis on status of CCS technique and its prospect in China[J]. Journal of Jianghan Petroleum University of Staff and Workers,2010, 23(2): 69-72.[程昌慧. 浅析中国CCS 项目的现状和前景[J]. 江汉石油职工大学学报, 2010, 23(2): 69-72.]
[4]Xu Zhigang, Chen Daizhao, Zeng Rongshu. Geological storage of CO2 and commercial utilization[J].Advances in Earth Science, 2007, 22(7): 698-707.[许志刚, 陈代钊, 曾荣树. CO2的地质埋存与资源化利用进展[J]. 地球科学进展, 2007, 22(7): 698-707.]
[5]Zhang Weidong, Zhang Dong,Tian Kezhong. Carbon capture and sequestration technology[J]. Sino-Global Energy, 2009, 14: 7-13.[张卫东, 张栋, 田克忠. 碳捕集与封存技术的现状与未来[J]. 中外能源, 2009, 14: 7-13.]
[6]Shan Liwei, Feng Guiying, Fan Sanhong. Progress in genome and methanogesis of methanogens[J]. Journal of Microbiology,2003, 23(6): 42-46.[单立伟, 冯贵颖, 范三红. 产甲烷菌研究进展[J]. 微生物学杂志, 2003, 23(6): 42-46.]
[7]Hungate R E, Macy J. The roll tube methode for cultivation of strict anaerobes[J]. Bulletins of the Ecological Research Committee,1973, 17: 123-125.
[8]Maudgalya S, Knapp R P, Mclnerney M J, et al. Mixrobial enhanced oil recovery technologies: A review of the past, present, and future[C]2007 SPE Production and Operations Symposium, Oklahoma City, Oklahoma, U.S.A.,2007.
[9]Smith K S, IngramSmith C. Methanosaeta, the forgotten methanogen?[J].Trends in Microbiology,2007,15(4): 150-155.
[10]Hao Xianjun, Hong Jianping, Gao Wenjun. Research advances in methanotrops[J]. Guizhou Agricultural Sciences,2007,35(1): 111-113.[郝鲜俊, 洪坚平, 高文俊. 产甲烷菌的研究进展[J]. 贵州农业科学, 2007, 35(1): 111-113.]
[11]Cowles P B, Rettger L F. Isolation and study of an apparently widespread Cellulose fermenting anaerobe, Cl. Celluloslvens (N.SP.?)[J].Journal of Bacteriology,1931,21(3):167-182.
[12]Bryant M P. Methanproducing Bacteria[M]. Baltimore: Williams and Wilkins Copmpany, 1974, Part B: 472-477.
[13]Belyaev S S, Ivanov M V. Bacterial methanogenesis in underground waters[J].Ecology Bulletin,1983, 35: 273-280.
[14]Ivanov M V, Belyace S S, Zyakum A M, et al. Microbiological methane formation in oil field development[J]. Geokhimya,1988, 11: 1 647-1 654.                                                                                                                                                                               [15]Rafique M A. Microbila Enhanced Oil Recovery (MEOR) with special emphasis to the "uneconomical reserves"[C]2008 SPE Annual Technical Conference and Exhibition, Denver, Colorado, U.S.A .,2008.
[16]Zhang Shuichang, Zhao Wenzhi, Li Xianqi,et al. Advances in biogenic gas studies and play strategies[J].Petroleum Exploration and Development,2005, 32(4):90-96.[张水昌, 赵文智, 李先奇, 等. 生物气研究进展与勘探策略[J]. 石油勘探与开发,2005, 32(4):90-96.]
[17]Liu Qingchun, Qian Huaisui. International geospherebiosphere program: Progress and prospect[J].Meteorological Science and Technology,2005, 23(1): 91-95.[刘清春, 千怀遂. 国际地圈生物圈计划研究进展和展望[J].气象科技, 2005, 23(1): 91-95.]
[18]Hallberg R, Meyers P A. Bacteria, biomineralization, and biomarker molecules biogeochemical aspects of the evolution and impacts of life on earth[J].AMBIO: A Journal of the Human Environment,2004, 33(8): 537-538. 
[19]Orphan V J, Taylor L T, Hafenbradl D, et al. Culture dependent and cultureindependent characterization of microbial assemblages associated with hightemperature petroleum reservoirs[J]. Applied and Environmental Microbiology,2000, 66 (2): 700-711.
[20]Nilsen R K, Torsvik T. Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water[J]. Applied and Environmental Microbiology, 1996, 62 (2): 728-731.
[21]Ramkrishna S. Biotechnology in petroleum recovery: The microbial EOR[J]. Progress in Energy and Combustion Science,2008, 34: 714-724.
[22]Magot M, Ollivier B, Patel B K C. Microbiology of petroleum reservoirs[J].Antonie van Leeuwenhoek, 2000, 77: 103-116.
[23]Ollivier B, Fardeau M, Cayol J, et al. Methanocalculus halotoerans gen. nov., sp nov., isolated from an oil producing well[J].International Journal of Systematic Bacteriology,1998, 48: 821-828.
[24]Whiticar W J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environment: CO2 reduction vs. acetate fermentation Isotope evidence[J].Geochimica et Cosmochimica Acta,1986, 50: 693-709.                                              [25]Noble R A, Henk J F H. Hydrocarbon charge of a bacterial gas field by prolonged metnanogensis: An example from the East Java Sea, Indonesia[J].Organic Geochemistry,1998, 19(1/3): 301-314.
[26]Lessner D J, Li L, Li Q, et al. An unconventional pathway for reduction of CO2 to methane in CO grown Methanosarcina acetivorans revealed by proteomic[J]. Proceedings of the National Academy of Science of the United States of American,2006, 103(47): 17 921-17 926.
[27]Stojanowic A, Hedderich R. CO2 reduction to the level of formylmethanofuran in Methanosarcina barkeri is non-energy driven when CO is the electron donor[J].FEMS Microbiology Letters,2006, 235 (1): 163-167.
[28]Nobel R A, Henk J F H. Hydrocarbon charge of a bacterial gas field by prolonged metnanogensis: An example from the East Java Sea, Indonesia[J]. Organic Geochemistry, 1998, 19 (1/3): 301-314.
[29]Li D, Hendry P. Microbial diversity in petroleum reservoirs[J]. Australia Microbology,2008, 29(1): 25-27.
[30]Guo Zeqing, Li Benliang, Zeng Fuying, et al. Distribution characteristics and reseaech conditions of the biogenetic gas[J]. Natural Gas Geoscience,2006, 17(3): 407-413.[郭泽清, 李本亮, 曾富英,等. 生物气分布特征和成藏条件[J]. 天然气地球科学,2006, 17(3):407-413.]
[31]Guan Deshi. The methanogens surviving situation and biogas[J].Nature Gas Industry, 1990, 10(5): 13-19.[关德师. 甲烷菌的生存条件与生物气[J]. 天然气工业,1990, 10(5): 13-19.]                                                                                                                                                                                                                                                          [32[32]Zhang Hui, Lian Liwen. The composition and distribution of some kinds of anaerobic microorganisum in the differet sedimentary environments[J]. Acta Microbiologica Sinica,1992, 32(3): 182-190.[张辉, 连莉文. 不同沉积环境中几种厌氧细菌的组成与分布[J]. 微生物学报,1992, 32(3): 182-190.]
[33]Li Mingcheng, Li Jian, Zhang Fengmin, et al. Quantitative research on biogas migrationaccumulation and poolforming in the quaternary of Sanhu area in Qaidam Basin[J]. Acta Petrolei Sinica, 2009, 30(6): 809-815.[李明诚,李剑,张凤敏,等. 柴达木盆地三湖地区第四系生物气运聚成藏的定量研究[J]. 石油学报,2009, 30(6): 809-815.]
[34]Li Jin, Hu Guoyi, Zhang Ying, et al. Study and application of carbon isotope fractionation during the reduction process from CO2 to CH4[J]. Earth Science Frontiers,2008, 15(5): 357-363.[李谨, 胡国艺, 张英, 等. 生物气CO2还原途径中碳同位素分馏作用研究及应用[J].地学前缘,2008, 15(5): 357-363.]
[35]Ding Anna, Lu Shuangfang, Feng Zihui, et al. Activity of bacteria and archaea in immature or lowermature organic matter and new appraisal methods for biogas source rocks[J].Petroleum Exploration and Development,2008, 35(1): 59-66.
[36]Lin Chunming, Li Yanli, Qi Binwen. Research status and exploration potential of biogenic gas[J]. Journal of Palaeogeography,2006, 8(3): 317-330.[林春明, 李艳丽, 漆滨汶. 生物气研究现状与勘探前景[J]. 古地理学报, 2006, 8(3): 317-330.]
[37]Mochimaru H, Yoshioka H, Tamaki H, et al. Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan[J]. Extremophile, 2007, 11: 453-461.
[38]Gray N D, Sherry A, Larter S R, et al. Biogenic methane production in formation waters from a large gas field in the North Sea[J].Extremophiles,2009, 13: 511-519.
[39]Zhang Dan. Microbial production and consumption of atmospheric methane[J]. Journal of Shenyang College of Education, 2009, 11(4):108-110.[张丹. 大气甲烷的微生物产生与消耗[J]. 沈阳教育学院学报, 2009, 11(4): 108-110.]
[40]Zhang Wudi, Song Hongchuan, He Caiyun. Methanogens[J]. Jiangsu Rural Energy Environmental Protection, 1997, 2: 3-6.[张无敌, 宋洪川, 何彩云. 产甲烷细菌[J]. 江苏农村能源环境保护, 1997, 2: 3-6.]
[41]Slobodkin A I, Zavarzina D G, Sokolova T G, et al. Dissimilatory reduction of inorganic electron acceptors bythermophilic anaerobic prokaryotes[J].Microbiology,1999, 68(5): 600-622.
[42]Lin Daiyan, Lin Xinjian, Yang Jing, et al. Advance in utilization of methanobacteria for anaerobic digestion studies[J]. Fujian Journal of Agricultural Sciences,2008, 23(1): 206-110.[林代炎, 林新坚, 杨菁, 等. 产甲烷菌在厌氧消化中的应用研究进展[J]. 福建农业学报, 2008, 23(1): 206110.]
[43]Jee H S, Nishio N, Nagai S. Continuous CH4 production from H2 and CO2 by methanobacterium thermoautrophicum in a fixed bed reactor[J].Fermentation Technology,1988, 66(2): 235-238.
[44]Jee H S, Yano T, Nishio N, et al. Biomethanation of H2 and CO2 by methanobacterium thermoautrophicum in membrane and ceramic bioreactor[J].Fermentation Technology,1987, 65(4): 413-418.                                                                                  [45]Nishimura N, Kitaura S, Mimura A, et al. Growth of thermophilic methanogen KN-15 on H2-CO2 under bath and continous conditions[J]. Journal of Fermentation and Bioengineering,1992, 72(4): 280-284.
[46]Nishimura N, Kitaura S, Mimura A, et al. Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions[J].Journal of Fermentation and Bioengineering, 1992, 73(6): 477-480.
[47]Yano T, Aoki K, Nagai S. Kinetics of CH4 production from H2 and CO2 in a hollow fiber reactor by plug flow reaction model[J].Journal of Fermentation and Bioengineering,1991, 71(3): 203-205.
[48]Vega J L, Clausen E C, Gaddy J L. Resources, design of bioreactors for coal synthesis gas[J]. Fermentations Conservation and Recycling,1990, 3:149-160.
[49]Gerhard E, Butsch B M, Marison I W, et al. Improved growth and methane production conditions for methanobacterium thermoatotrophicum[J]. Applied Microbiology Biotechnology,1993, 40: 432-437.                                                                           [50]Pauss A, Andre G, Perrier M, et al. Liquidtogas mass transfer in anaerobic processes: Invitable transfer limitations of methane and hydrogen in the biomethanation process[J].Applied Microbiology Biotechnology,1990, 56(6): 1 636-1 644.
[51]Kim I S, Hwanga M H, Janga N J, et al. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process[J]. International Journal of Hydrogen Energy, 2004, 29: 1 133-1 140.
[52]Ju D H, Shina J H, Leeb H K, et al. Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollowfiber membrane reactor (Hf-MBFR)[J].Desalination, 2008, 234: 409-415.
[53]Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J].Bioresource Technology, 2010, 101(9): 3 085-3 090.
[54]Koide H, Yamazki K. Subsurface CO2 disposal with enhanced gas recovery and biogeochemical carbon recycling[J].Environmental Geosciences,2001, 8(3): 218-224.                                                                                                                     [55]Xia Zunyi, Bai Zhiqiang. Dicussion on a CO2 geological sequestration by methanogens in the biogenic gas field in China[J].Petroleum Exploration and Development,2004, 31(6): 72-74.[夏遵义, 白志强. 利用产甲烷菌进行CO2地质固定在中国生物气田的应用初探[J]. 石油勘探与开发,2004, 31(6): 72-74.]
[56]Fujiwara K, Mukaidani T, Kano S, et al. Research study for microbial restoration of methane deposit with subsurface CO2 sequestration into depleted gas/oil fields[C]The 2006 SPE Asia Pacific oil & Gas Conference and Exhibition. Adelaide, Australia, 2006, doi:10.2118/101248-MS.
[57]Sugai Y, Niimi T, Sasaki K, et al. Screening of oil degrading and hydrogenproducing microorganisms for microbial conversion of CO2 into CH4 in oil reservoir[C]The CIPC/SPE Gas Technology Symposium 2008 Joint Conference. Albert, Canada,2008.
[58]Maeda H, Miyagawa Y, Ikarashi M, et al. Development of microbial conversion process of residual oil into methane in depleted oil fields[C]The 2009 SPE Asia Pacific oil & Gas Conference and Exhibition. Jakarta Indonesia,2009.
[59]Otagaki H, Fujiwara K, Hattori Y, et al. Verification of microbial activities for microbial restoration of methane deposit with subsurface CO2 sequestration into the depleted oil fields[C]The 2009 SPE Asia Pacific oil & Gas Conference and Exhibition. Jakarta Indonesia, 2009.
[60]Fu Lin, Xin Mingxiu. Ecological diversity and industrial application of methanogens[J]. China Journal of Applied and Environmental Biology, 2009,15(4): 574-578.[傅霖, 辛明秀. 产甲烷菌的生态多样性及工业应用[J]. 应用与环境生物学报, 2009,15(4): 574-578.]
[61]He Zhengguo, Wang Xiuheng. Diagensisi and biological control of corrosion caused by SRB in reservoirs[J]. Oilfield Chemistry,1999, 16(4): 390-392.[何正国, 王修垣. 油藏中硫酸盐还原菌引起的腐蚀诊断及其生物学防治\[J\]. 油田化学,1999, 16(4): 390-392.]
[62]Slobodkin A I, Zavarzina D G, Sokolova T G, et al. Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes[J].Microbiology,1999, 68(5): 522-542.
[63]Sower K R, Ferry J G. Methanogensis in the marine environment[J/OL]. http://www.bmb.psu.edu/faculty/ferry/lab/publications/publications/ENCYCL%20ENVIRON%20MI CROBIOL%20v1%20p1913. pdf Methanotrophic bacteria,2004:1 913-1 923.
[64]Yi Zhengqi, Tan Kaixuan, Zhan Aili, et al.Sulfatereducineria bacteria and its application disposal of industrial wastewater and acid mine drainage[J]. Journal of Yunnan Normal University,2006, 26(3): 39-45.[易正戟, 谭凯旋, 澹爱丽,等. 硫酸盐还原菌及其在工业和矿山废水治理中的应用[J].云南师范大学学报,2006, 26(3): 39-45.]
[65]Ingvorsen K, Zehnder A J B. Kinetics of sulfate and acetate uptake by Desulfobacter postgatei[J].Appllied Environmental Microbiology,1984, 47(2): 403-408.                                                                                                                                                  [66]Oude Elferink, Visser A S J W H, Hulshoff Pol L W,et al. Sulfate reduction in methanogenic bioreactors[J]. FEMS Microbiology Reviews,1994, 15: 119-136.                                                                                                                                       [67]Stucki G. Biological sulfuric acid transformation reactor design and processing optimization[J].Biotechnology and Bioengineering,1993, 41(3): 303-315.
[68]Raskin L, Rittmann B E, Stahl D A. Competition and coexistence of sulfatereducing and methanogenic populations in anaerobic biofilms[J]. Journal of Applied Microbiology,1996, 62(10): 3 847-3 857.
[69]Koster I W, Rinzema A, de Vegt A L. Sulfide inhibition of the methanogenic activity of granular sludge at various pHlevels[J].Water Research,1986,20(12): 1 561-1 567.
[70]Yu Xiaozhang, Peng Xiaoying, Zhou Puhua.Temperature dependency of anaerobic conversion of acetate and propionate by thermophilic inoculum[J]. Journal of Hunan agricultural university (Natural Science),2005, 31(4): 422-426.[于晓章, 彭晓英, 周朴华. 温度对厌氧嗜热菌群产甲烷能力的影响\[J\]. 湖南农业大学学报:自然科学版, 2005, 31 (4): 422-426.]
[71]Patel G B, Khan A W, Roth L A.Optimum levels of sulphate and iron for the cultivation of pure cultures of methanogens in synthetic media[J].Journal of Applied Microbiology, 1978, 45(3):347-356.
[72]Conrad R, Phelps T J, Zeikus J G. Gas metabolism evidence in support of the juxtaposition of hydrogenproducing and methanogenic bacteria in sewage sludge and lake sediments[J]. Applied and Environmental Microbiology,1985, 50(3): 595-601.[73]Steven T O, McMkinley J P. Lithoautotrophic microbial ecosystem in deep basalt aquifers[J].Science,1995, 270(5 235): 450-455.
[74]Feng Liang, Chen Yijian, Zhang Kun, et al. Underground antiexplosion monitor system during air drilling[J]. China Petroleum Machinery,2007, 35(5): 35-37,40.[冯靓, 陈一健, 张昆.空气钻井井下燃爆监测系统[J]. 2007, 35(5): 35-37, 40.]
[75]Nandi  R, Sengupta  S.Microbial production of hydrogen: An overview[J].Critical Reviews in Microbiology,1998,24(1):61-84.
[76]Preston C K, Eng P. The IEA GHG WeyburnMidale CO2 monitoring and storage project: An update on the final phase[C]IEA-EOR 30th Annual Meeting. Canberra, Australia,2009.
[77]Babadagli T. Development of mature oil fields—A review[J].Journal of Petroleum Science and Engineering, 2007, 57(3/4): 221-246.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[5] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[6] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[7] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[8] 李琦,刘桂臻,张建,贾莉,刘海丽. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.
[9] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[10] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
[11] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[12] 许志刚,陈代钊,曾荣树. CO 2的地质埋存与资源化利用进展[J]. 地球科学进展, 2007, 22(7): 698-707.
[13] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
[14] 杨黎芳,李贵桐,李保国. 土壤发生性碳酸盐碳稳定性同位素模型及其应用[J]. 地球科学进展, 2006, 21(9): 973-981.
[15] 潘根兴;赵其国. 我国农田土壤碳库演变研究:全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384-393.
阅读次数
全文


摘要