地球科学进展 ›› 2011, Vol. 26 ›› Issue (10): 1079 -1091. doi: 10.11867/j.issn.1001-8166.2011.10.1079

研究论文 上一篇    下一篇

北欧海的锋面分布特征及其季节变化
何琰,赵进平   
  1. 中国海洋大学海洋环境学院,山东青岛266100
  • 收稿日期:2011-04-28 修回日期:2011-09-07 出版日期:2011-10-10
  • 通讯作者: 何琰(1984-),女,吉林四平人,博士研究生,主要从事极地物理海洋学研究. E-mail:jane1103@ouc.edu.cn
  • 基金资助:

    国家自然科学基金项目“北极涛动核心区的关键海洋学过程研究”(编号:40876006)资助.

Distributions and Seasonal Variations of Fronts in GIN Seas

He Yan, Zhao Jinping   

  1. Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao266100, China
  • Received:2011-04-28 Revised:2011-09-07 Online:2011-10-10 Published:2011-10-10

利用多年月平均格点数据分析了北欧海主要锋面的分布特征和季节变化规律,并讨论了月平均数据分析锋面适合使用的方法。月平均数据显示的锋面出现间断或多重的现象是锋面侧向摆动造成的,这是月平均数据的一大特点。北欧海各锋面主要水文和季节变化特征差异很大。东格陵兰极地锋在夏季锋面强度大,锋面较连续完整,而冬季强度小,锋面结构零散。9月由于东格陵兰寒流势力最强,可观察到温度梯度较大且连续的东格陵兰锋。北极锋的季节变化在水平方向呈“哑铃型”分布,中段摆动较南北两端小。由于挪威海流在冬季出现的最大流量引起挪威海流的流幅在该处加宽,莫恩海脊锋冬季向西北移动,对前人文章中基本上没有季节性移动的说法进行了修正和补充。冰岛—法罗群岛锋随深度增加向南移动,锋面强度增强,这是溢流造成的。

The spatial distributions and seasonal variations of the main fronts in GIN seas are analyzed by grid data of monthly mean of temperature and salinity. The suitable application method for monthly data in frontal study is discussed. As the fronts often move or swing, the front information in monthly data has been blurred and the fronts obtained by monthly mean temperature and salinity sometimes show  interrupted front and multi-front phenomena. However, the blurry fronts are just the averaged status of fronts, which can only be revealed by monthly data. The fronts show significant diversity in their characteristics and seasonal variations. The East Greenland Polar Front (EGPF) is mainly a salinity front, being evident and continuous in summer and weak and interrupted in winter. The EGPF is also a temperature front in summer. The obvious temperature gradient and uninterrupted shape appears  in September, being attributed to the maximum temperature difference between the East Greenland Current and the return currents at that time, which keeps the location of EGPF relatively stationary. The Arctic Front (AF) has a seasonally spatial variation with "dumbbell" shape—The seasonal displacement near the northern and southern parts of the front is much larger than that in the middle part, showing the larger swinging amplitude there. AF near the Mohn Ridge was addressed as a no-motion part, however, AF by this study is revealed to move northwestward in winter because the flux of Norwegian Current reaches the maximum then and induces the broadest width of the current near the Mohn Ridge area. A special characteristic of the Iceland-Faroe Front is that the interface of the front appears more southward and stronger in deep part, which is caused by the overflow above the ridge.

中图分类号: 

[1] Swift J H, Aagaard K. Seasonal transitions and water mass formation in the Iceland and Greenland seas[J].Deep Sea Research Part A:Oceanographic Research Papers,1981,28(10):1 107-1 129.
[2] Helland-Hansen B, Nansen F. The Norwegian Sea, Its Physical Oceanography based upon the Norwegian Researches 1900-1904[R].Report on Norwegian Fishery and Marine-Investigations 11(2).Kristiania det Mallingske Bogtrykkeri,1909.
[3] Rudels B, Fahrbach E, Meincke J, et al. The East Greenland Current and its contribution to the Denmark Strait overflow[J].ICES Journal of Marine Science, 2002, 59(6): 1 133-1 154.
[4] Wadhams P, Gill A E, Linden P F. Transects by submarine of the East Greenland Polar Front[J].Deep Sea Research Part A:Oceanographic Research Papers, 1979, 26(12): 1 311-1 327.
[5] Aagaard K, Coachman L K. The East Greenland Current north of Denmark Strait: Part I[J].Arctic,1968, 21(3): 181-200.
[6] Paquette R G, Bourke R H, Newton J F, et al. The East Greenland Polar front in autumn[J].Journal of Geophysical Research,1985, 90(C3): 4 866-4 882.
[7] Manley T O, Hunkins K L, Muench R D. Current regimes across the east Greenland polar front at 78°40′ north latitude during summer 1984[J].Journal of Geophysical Research,1987, 92(C7): 6 741-6 753.
[8] Dietrich G. Atlas of the Hydrography of the Northern North Atlantic Ocean[M].Copenhagen: International Council for the Exploration of the Sea, 1969.
[9] Hopkins T S. The GIN Sea—A synthesis of its physical oceanography and literature review 1972-1985[J]. Earth-Science Reviews, 1991, 30(3/4): 175-318.
[10] Van Aken H M, Quadfasel D, Warpakowski A. The arctic front in the Greenland Sea during February 1989: Hydrographic and biological observations[J].Journal of Geophysical Research, 1991, 96(C3):  4 739-4 750.
[11] Cottier F R, Venables E J. On the double-diffusive and cabbeling environment of the Arctic Front, West Spitsbergen[J].Polar Research, 2007, 26(2): 152-159.
[12] Nilsen J E , Falck E. Variations of mixed layer properties in the Norwegian Sea for the period 1948-1999[J].Progress in Oceanography, 2006, 70(1): 58-90.
[13] Smart J H. Spatial variability of major frontal systems in the North Atlantic-Norwegian Sea area: 1980-1981[J].Journal of Physical Oceanography, 1984, 14(1): 185-192.
[14] Hansen B, Østerhus S, Hátún H, et al. The Iceland-Far inflow of Atlantic water to the Nordic Seas[J].Progress in Oceanography, 2003, 59(4): 443-474.
[15] Kostianoy A G, Nihoul J C J, Rodionov V B. Physical Oceanography of Frontal Zones in the Subarctic Seas[M]. Amsterdam: Elsevier, 2004.
[16] Blindheim J, sterhus S. The Nordic Seas, main oceanographic features[C]Drange H, et al, eds. The Nordic Seas: An Integrated Perspective Oceanoraphy, Climatology, Biogeochemistry, and Modeling. Washington DC: AGU, 2005: 11-37.
[17] Kostianoy A G, Nihoul J C J. Frontal zones in the Norwegian, Greenland, Barents and Bering Seas[C]Nihoul J C J, et al, eds. Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions. Dordrecht: Springer, 2009: 171-190.
[18] Parsons A R, Bourke R H, Muench R D, et al. The Barents Sea Polar front in summer[J]. Journal of Geophysical Research, 1996, 101(C6): 14 201-14 221.
[19] Willebrand J, Meincke J. Statistical analysis of fluctuations in the Iceland-Scotland frontal zone[J]. Deep Sea Research Part A: Oceanographic Research Papers,1980, 27(12): 1 047-1 066.
[20] Gould W J, Loynes J, Backhaus J. Seasonality in slope current transport N.W. of Shetland[C]ICES Station of Meeting 1985, C. M,1985.
[21] Pistek P, Johnson D R. Transport of the Norwegian Atlantic Current as determined from satellite altimetry[J].Geophysical Research Letters, 1992, 19(13): 1 379-1 382.
[22] Samuel P, Johannessen J A, Johannessen O M. A study on the inflow of Atlantic Water to the GIN Sea using GEOSAT altimeter data[C]Johannessen O M, et al, eds. The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume. Washington DC: AGU, 1994: 95-108.
[23] Griffiths C. A fine resolution numerical model of the Iceland-Faroe front with open boundary conditions[J].Journal of Geophysical Research, 1995, 100(C8): 15 915-15 931.

[1] 史文奇, 赵进平. 北欧海溢流的水文特征和变化机理综述[J]. 地球科学进展, 2017, 32(3): 245-261.
[2] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[3] 邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42-55.
[4] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[5] 李伟平,刘新,聂肃平,郭晓寅,史学丽. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.
[6] 李向应,李忠勤,陈正华,赵中平,尤晓妮,朱宇漫. 天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程[J]. 地球科学进展, 2006, 21(5): 487-495.
[7] 兰健,洪洁莉,李丕学. 南海西部夏季冷涡的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1145-1152.
[8] 尤晓妮,李忠勤,王飞腾,朱宇曼. 乌鲁木齐河源1号冰川不溶微粒的季节变化特征[J]. 地球科学进展, 2006, 21(11): 1164-1170.
[9] 陈举;施平;王东晓;杜岩. TRMM卫星降雨雷达观测的南海降雨空间结构和季节变化[J]. 地球科学进展, 2005, 20(1): 29-035.
[10] 刘强;王跃思;王明星. 北京地区大气主要温室气体的季节变化[J]. 地球科学进展, 2004, 19(5): 817-823.
[11] 谢云,刘宝元,伍永秋. 切沟中土壤水分的空间变化特征[J]. 地球科学进展, 2002, 17(2): 278-282.
[12] 上官行健; 王明星; 陈德章; 沈壬兴. 稻田土壤中的CH4产生[J]. 地球科学进展, 1993, 8(5): 1-12.
[13] 上官行健;王明星;沈壬兴. 稻田CH 4的排放规律[J]. 地球科学进展, 1993, 8(5): 23-36.
阅读次数
全文


摘要