地球科学进展 ›› 2001, Vol. 16 ›› Issue (1): 79 -85. doi: 10.11867/j.issn.1001-8166.2001.01.0079

综述与评述 上一篇    下一篇

沉积盆地超压系统演化、流体流动与成藏机理
郝芳 1,董伟良 2
  
  1. 1.石油大学,北京 昌平  102200;  2.中海石油有限公司湛江分公司,广东 湛江  524057
  • 收稿日期:2000-05-09 修回日期:2000-07-17 出版日期:2001-02-01
  • 通讯作者: 郝芳(1964-),男,内蒙古赤峰人,教授,主要从事石油地质研究. E-mail:haofang@cug.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“中国典型叠合盆地油气形成富集与分布预测”09课题(G1999043309)资助.

ACCUMULATION IN OVERPRESSURED SYSTEMS IN SEDIMENTARY BASINS

HAO Fang 1, DONG Wei-liang 2
  

  1. 1.University of Petroleum,Beijing Changping  102200,China;
    2.CNOOC China Limited-Zhanjiang,Zhanjiang  524057,China
  • Received:2000-05-09 Revised:2000-07-17 Online:2001-02-01 Published:2001-02-01

压实不均衡和生烃,特别是生气作用是可独立产生大规模超压的主要机制。根据超压顶面的几何形态、超压的发育机制、超压系统的内部结构和演化,可将超压系统分为封隔型超压系统和动态超压系统2类。超压流体的排放包含2个层次:从超压泥岩向邻近输导层的初次排放和从超压系统向上覆常压系统或相对低超压系统的二次排放。封隔型超压系统的流体排放主要通过周期性顶部封闭层破裂进行,动态超压系统的流体排放可能主要通过断裂或其它构造薄弱带、超压顶面隆起点和超压系统内构造高点处的水力破裂集中进行。超压盆地油气倾向于在静水压力系统富集,并具有幕式充注特征,但超压系统既可发育商业型油藏,也可形成大型气藏。

Compaction dis equilibrium and hydrocarbon generation especially gas generation are the two mechanisms that could generate alone considerable overpressures. Based on the three dimensional shape of the top of overpressured systems, the main cause of overpressure and the inner structure of the overpressured systems, two types of overpressured systems could be classified: compartmentalized overpressured systems and dynamic overpressured ones. Overpressured fluid expulsions occur in two levels: primary expulsion from overpressured shales to nearby sandstones, and secondary expulsion from the whole overpressured system to overlying normal pressured system. In compartmentalized overpressured systems, the fluid drains mainly through episodically opened hydraulic fractures in top seals. In dynamic overpressured systems, secondary fluid expulsions occur along faults or fractures at the highs of the tops of overpressured system or structural highs within the overpressured systems. Petroleum in overpressured basins tends to accumulate preferentially in the normal pressure systems due to natural fracture of sediments and resultant cross formation migration. However, both commercial oil accumulation and large gas reservoirs could be formed in overpressured system.

中图分类号: 

[1]  Masters J A. Elimworth—Case study of a deep basin gas field[A]. AAPG Memoir 51[C]. Tulsa: AAPG, 1984. 316p.
[2]  Hunt J M. Petroleum geology and geochemistry (2nd ed.)[M]. San Francisco: Freeman Company, 1996. 743p.
[3]  Hunt J M. Generation and migration of petroleum from abnormally pressured fluid compartments [J]. AAPG Bulletin,1990, 74: 1~12.
[4]  Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation [ J ].AAPG Bulletin, 1997, 81:1 023~1 041.
[5]  Swarbrick R E. AADE forum: pressure regimes in sedimentary basins and their prediction[J]. Marine and Petroleum Geology, 1999, 16: 483~486.
[6]  Holm G. How abnormal pressures affect hydrocarbon exploration, exploitation[J]. Oil &Gas Journal, 1998, 96: 79~84.
[7]  Hunt J M, Whelan J K, Eglinton L B,et al. Gas generation—A major cause of deep Gulf Coast overpressures[J]. Oil &Gas Journal, 1994, 92:59~62.
[8]  Bruce C H. Smectite dehydration-its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico Basin[J]. AAPG Bulletin, 1984, 68:673~683.
[9]  Colton-Bradley V A C. Role of pressure in smectite dehydration-effects on geopressure and smectite-illite transformation[J]. AAPG Bulletin, 1987, 71:1 414~1 427.
[10]  Surdam R C, Jiao Z S, Heasler HP. Anomalously pressured gas compartments in Cretaceous rocks of the Laramide Basin of Wyoming: A new class of hydrocarbon accumulation[A].In:Surdam R C, ed. Seals, Traps and the Petroleum System[C]. AAPG Memoir 67. Tulsa: AAPG, 1997. 199~222.
[11]  Wilkinson M, Darby D, Haszeldine R S,et al. Secondary porosity generation during deep burial associated with over-pressure leak-off, Fulmar formation, UK Central Graben[J]. AAPG Bulletin, 1997, 81:803~813.
[12]  Osborne M J, Swarbrick R E. Diagenesis in North Sea HPH-T clastic reservoirs-consequences for porosity and overpressure prediction[J]. Marine and Petroleum Geology, 1999,16: 337~353.
[13]  McTavish R A. The role of overpressure in the retardation of organic matter maturation[J]. Journal of Petroleum Geology, 1998, 21:153~186.
[14]  Fouch T D, Nuccio V F, Ander D E,et al. Green river(!) petroleum system, Unita Basin, Utah, USA[A]. In: Magoon L B, Dow W G, eds. The Petroleum System—From Source to Trap [C]. AAPG Memoir 60. Tulsa: AAPG, 1994. 398~421.
[15]  Carr A D. A vitrinite reflectance kinetic model incorporating overpressure retardation[J]. Marine and Petroleum Geology,1999, 16:355~377.
[16]  Hao Fang, Li Sitian, Sun Yongchuan,et al. Overpressure retardation of organic-matter maturation and hydrocarbon generation: A case study from the Yinggehai and Qiongdongnan basins, offshore South China Sea[J]. AAPG Bulletin, 1995, 79:551~562.
[17]  Spencer C W. Hydrocarbon generation as a mechanism for overpressuring in Rocky Mountain region[J]. AAPG Bulletin, 1987, 71:368~388.
[18]  Cartwright J A. Episodic basin-wide fluid expulsion from geopressured shale sequence in the North Sea basin[J]. Geology, 1994, 22:447~450.
[19]  Whelan J K, Kennicutt II M C, Brooks J M,et al. Organic geochemical indicators of dynamic fluid flow process in petroleum basins[J]. Organic Geochemistry, 1994, 22:587~615.
[20]  Ghaith A, Chen W, Ortoleva P. Oscillatory methane release from shale source rock[J]. Earth Science Reviews, 1990, 29:241~248.
[21]  Roberts S J, Nunn J A. Episodic fluid expulsion from geopressured sediments [J]. Marine and Petroleum Geology,1995, 12:195~204.
[22]  Al-Shaieb Z, Puckette J O, Abdalla A A,et al. Megacompartment complex in the Anadarko Basin: a completely sealed overpressured phenomenon[A]. In Ortoleva P J, ed. Pressure Compartments and Seas[C]. AAPG Memoir 61. Tulsa: AAPG, 1994. 55~68.
[23]  Heasler H P, Surdam R C, George J H. Pressure compartments in the Power River Basin, Wyoming and Montana, as determined from dill-stem test data[A]. In Ortoleva P J, ed. Pressure Compartments and Seas[C]. AAPG Memoir 61. Tulsa: AAPG, 1994. 235~262.
[24]  Holm G M. The Central Graben-a dynamic overpressure system[A]. In: Glennie K, Hurst A, eds. NW Europe' s Hydrocarbon Industry[C]. London: Geological Society of London Special Publication, 1995. 107~122.
[25]  Gong Zaisheng, Li Sitian. Cantinental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea[M].Beijing: Science Press,1997.[龚再升,李思田.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.]
[26]  Zhang Yigang. The Generation, Accumulation and Preservation of Natural Gases[M].Tianjin: Haihe University Press,1991.[张义纲.天然气的生成、聚集和保存[M].天津:海河大学出版社,1991.]
[27]  Dewers T, Ortoleva P. Nonlinear dynamical aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release[J]. American Journal of Science, 1994, 294:713~755.
[28]  Roberts S J, Nunn J A, Cathles L,et al. Expulsion of abnormally pressured fluids along faults[J]. Journal of Geophysical Research, 1996, 101:28 231~28 252.
[29]  Darby D, Haszeldine R S, Couples G D. Pressure cells and pressure seals in the UK Central Graben[J]. Marine and Petroleum Geology, 1996, 13:865~878.
[30]  Caillet G, Judge N C, Bramwell N P,et al. Overpressure and hydrocarbon trapping in the Chalk of the Norwegian Central Graben[J]. Petroleum Geoscience, 1997, 3:33~42.
[31]  Hao Fang, Li Sitian, Gong Zaisheng,et al. Thermal regime, inter-reservoir compositional heterogeneities, and reservoir-filling history of the Dongfang gas field, Yinggehai Basin, South China Sea: Evidence for episodic fluid Injections in overpressured basins? [J]. AAPG Bulletin, 2000, 84:607~626.
[32]  Luo Qihou, Wang Shiqian. Study on the enrichment cauditious and distribution regulation of natural gases in the Upper Trasic System in Middle and Wentern Sichuan Province[A].In:Dai Jinxing, Fu Chengde, Guan Defan,eds. New Developments in Geological Studies of Natural Gases[C].Beijing: Oil Industry Press,1997.[罗启后,王世谦.川中川西上三叠统天然气富集条件与分布规律研究[A].见:戴金星,傅承德,关德范主编.天然气地质研究新进展[C].北京:石油工业出版社, 1997.]
[33]  Ungerer P, Burrus J, Doligez B,et al. Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation and migration[J]. AAPG Bulletin, 1990, 74:309~335.

[1] 葛云锦,陈勇,周瑶琪,周振柱. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展, 2011, 26(10): 1050-1056.
[2] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[3] 朱志敏,闫剑飞,沈冰,周家云. 从“构造热事件”分析阜新盆地多能源矿产共存成藏[J]. 地球科学进展, 2007, 22(5): 468-489.
[4] 金强. 裂谷盆地生油层中火山岩及其矿物与有机质的相互作用——油气生成的催化和加氢作用研究进展及展望[J]. 地球科学进展, 1998, 13(6): 542-546.
阅读次数
全文


摘要