地球科学进展 ›› 2001, Vol. 16 ›› Issue (1): 60 -64. doi: 10.11867/j.issn.1001-8166.2001.01.0060

综述与评述 上一篇    下一篇

海洋浮游细菌的生态学研究
肖天   
  1. 中国科学院海洋研究所,山东 青岛  266071
  • 收稿日期:2000-05-08 修回日期:2000-07-11 出版日期:2001-02-01
  • 通讯作者: 肖天(1957),男,山东青岛人,副研究员,主要从事海洋微生物生态学研究. E-mail:txiao@ ms.qdio. ac. cn
  • 基金资助:

    国家重点基础研究发展规划项目“东黄海生态系统动力学与生物资源可持续利用”(编号:G19990437)和国家自然科学基金重大项目“渤海生态系统动力学与生物资源持续利用”(编号:49790010)联合资助.

THE STUDY ON MARINE BACTERIOPLNAKTON ECOLOGY

Xiao Tian   

  1. Institute of Oceanology,CAS,Qingdao  266071,China
  • Received:2000-05-08 Revised:2000-07-11 Online:2001-02-01 Published:2001-02-01

海洋浮游细菌在海洋生态系统中的重要作用随着对其生物量和生产力的深入研究而得到了充分肯定。以浮游细菌为核心的微食物环研究的开展,也显示出微食物环在海洋生态系统动力学过程中有不可替代的作用,是主食物链的重要补充,特别是在贫营养的大洋生态系统中。在不同水层和特殊环境中对海洋浮游细菌的研究结果表明其研究潜力巨大。就国内在这方面的研究现状和需进一步研究的内容进行了阐述。

The important role of marine bacterioplankton in the marine ecosystem is certainly definite with the thorough study of bacterioplankton biomass and production. The study of microbial food loop based on bacterioplankton has shown its effect which cannot be replaced in the processes of ecosystem dynamics. It is an important supplement to marine food chain, especially in oligotrophic pelagic marine ecosystem. In different water layers and special environment, the study of bacterioplankton has great potentialities and therefore is greatly concerned by many scientists. In this paper, there are also some information on its domestic study and further study needed in the near future.

中图分类号: 

[1] Kphcc A E. Marine Microbiology(Deep Sea)[M]. Translate by Sun G Y, Li S Z. Beijing: Science Press, 1964.
[2] Xuo T Y. Marine Bacteriology[M]. Beijing: Science Press, 1962.
[3] Hobbie J E. Use of nuclepore filters for counting bacteria by fluoresence microscopy[J] . Appl Environ Microbial, 1977, 33:1 225~1 228.
[4] Fuhrman J A. Bacterioplankton secondary production estimates for coastal waters of British Columbia, and California[J]. Appl Environ Microbial, 1980,39(6):1 085~1 095.
[5] Ning X R. Marine nanoplankton and picoplankton [J]. Dong-hai Marine Science,1997b, 15(3): 60~64.
[6] Cole J J. Bacterial production in fresh and saltwater ecosystems: a cross-system overview[J]. Mar Ecol Prog Ser, 1988,43:1~10.
[7] Sherr B F, Sherr E B, Hopkinson C S. Trophic interactions within pelagic microbial communities: Indications of feedoacs regulation of carbon flow[J]. Hydrobiology, 1988,159:19.
[8] Azam F, Fenchel T, Gray J G,et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser, 1983,10:257.
[9] Steward G F , Wikner J ,William P C ,et al. Estimation of virus production in the sea II. Field results[J]. Mar Microbe Food Webs, 1992,6(2):79~90.
[10] Kirchman. D L, Keil R G, Simon,et al. Biomass and production of heterotrophic bacterioplankton in the oceanic sub-arctic pacific[J]. Deep-Sea Research I,1993,40: 967~988.
[11] Shiah Fuh-kwo. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay[J]. Linmlo Oceanogr, 1994,39(6): 1 243~1 258.
[12] Kirchman D L, Rich J H, Barber R T. Biomass and biomass production of hetero trophic bacteria along 140°W in the equatorial Pacific: Effect of temperature on the microbial loop[J]. Deep-Sea Research, 1995,42: 603~619.
[13] Li C W, Ge Y G, Lu Y H. Advance in the Developing of Marine Technology (1991~1992)[M]. Beijing: China Ocean Press, 1993.
[14] Johnson P W, Sieburth J M. Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass[J].Limnol Oceanogr, 1979,24:928~935.
[15] Murphy L S, Haugen E M. The distribution and abundance of phototrophic ultrapankton in the North Atlantic[J]. Limnol Oceanogr, 1985,30: 47~58.
[16] Caron D A, Lim E L, Miceli G,et al. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community[J]. Mar Ecol Prog Ser, 1991,76:205~217.
[17] Iturrlaga R, Mttchell B G. Chroococcoid cyanobacteria: A significant component in the food web dynamics of the open ocean[J]. Mar Ecol Prog Ser, 1986,28:291~297.
[18] Cho B, Azam F. Biogeochemical significance of bacterial biomass in the oceans euphotic zone[J]. Mar Ecol Prog Ser, 1990, 63:253.
[19] Del Giorgie P A, Cole J J, Cimbleris A. Respiration rates in bacterial exceed phytoplankton production in unproductive aquatic systems[J]. Nature, 1997, 385:148~151.
[20] Scaria D. On the role of bacteria in secondary production[J]. Limnol Oceanogr, 1988,33: 1 220~1 224.
[21] Sherr E B, Sherr B F. Role of microbes in pelagic food webs: A revised concept[J]. Limnol Oceanogr, 1988,33: 1 225~1 227.
[22] Pomeroy L R. The microbial food web[J]. Oceanus, 1992.28~35.
[23]Hoproft R R, Roff J C. Phytoplankton size fractions in a tropical neritic ecosystem near Kingstion. Jamaica [J]. J Plankton Res, 1990,12:1 069~1 088.
[24] Davis P G, Sieburth J M. Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria[J]. Mar Ecol Prog Ser, 1984,19:237~246.
[25] McManus G B. Flow analysis of a planktonic microbial food web model[J]. Marine Microbial Food Webs,1991,5:145~160.
[26] Hagstrom A, Azam F, Andersson A,et al. Microbial loop in an oligotrophic pelagic marine ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes[J]. Mar Ecol Prog Ser, 1988,49:171.
[27] Burkill P H, Owens R J G, Mantoura R F C, et al. Syne-chococcus and its importance to the microbial food web of the northwestem Indian Ocean[J]. Deep-Sea Res,1993, 40:773~782.
[28] Landry M R, Kirshtein J, Constantinou J. Abundances and distributions of picoplankton populations in the central equatorial pacific from 12°N to 12°S, 140°W[J]. Deep-Sea Res(Ⅱ), 1996,43: 871~890.
[29] Xiao T, Zhang W C, Wang R. Elementary studies on the roles of cyanobacteria in marine microbial food loop [J].Marine Science,1999,5:5~8.
[30] Harada S. Variations in the transfer efficiency from photo-synthetic and bacterial carbon production into zooplankton during a shift of zooplankton dominance from copepoda to doliolida[A]. In: PICES Fourth Annual Meeting Abstracts[C]. 1995.23.
[31] Michael J R F, Philip W B, Graham S. Modeling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic: the importance of DOC[J]. Limnol Oceanogr, 1999, 44(1):80~94.
[32] Chen D,Qian Z Y,Wang Z M,et al. Ecological distribution of heterotrophic bacteria in the Continental Shelf of East China Sea [J].Studia Marine Sinica,1982, 19:3~9.
[33] Ning X R. Biological and ecological characterization of the marine unicellular cyanobacterium and its environmental factors in the estuary of Changjiang River and the adjacent East China Sea [J].Acta Oceanologica Sinica,1991,15(4): 552~559.
[34] Shen H Q.Quantitative distribution and species composition on marine microorganism and their relationship to environments in Daya Bay, Collections of papers on marine ecology in the Daya Bay(I)[M].Beijing: China Ocean Press, 1989.115~126.
[35] Zheng T L, Cai L Z, Jiang X Q. Bacterial biomass in the upwelling regions of Minnan Taiwan Bank Fishing Ground[M]. Beijing: Science Press,1991.356~365.
[36] Chen Q H,Qian S B. Study of nanophytoplankton and picophytoplankton in the coastal water of Qingdao [J]. Acta Oceanologica Sinica,1992,14(3):105~113.
[37] Xiao T, Jiao N Z, Wang R. Quantitative distribution of cyanobacteria and bacteria in Jiaozhou Bay[M]. Beijing: Science Press,1995.118~124.
[38] Jiao N Z, Xiao T. Bacterial secondary production in Jiaozhou Bay [J]. Chinese Science Bulletin,1995,40(9):829~832.
[39] Zheng T L,Mohammed E B,Li W Q,et al. Study on bacterial production and bacterial heterotrophic activity in Taiwan Strait[A].In: Oceanography in China[C].Beijing: China Ocean Press,1997.153~161.
[40] Zheng T L, Mohammed E B, Chen J C,e t al. Study on bacterial biomass in Taiwan Strait and its environmental factors[A].In: Oceanography in China[C].Beijing: China Ocean Press,1997.146~152.

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[3] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[4] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[5] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[6] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[7] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[8] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[9] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[10] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[11] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[12] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[15] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
阅读次数
全文


摘要