地球科学进展 ›› 1999, Vol. 14 ›› Issue (5): 513 -517. doi: 10.11867/j.issn.1001-8166.1999.05.0513

全球变化研究 上一篇    下一篇

现代冰川中的微粒研究与气候环境变化
刘纯平,姚檀栋,谢树成   
  1. 中科院兰州冰川冻土研究所冰芯与寒区环境开放实验室,甘肃 兰州 730000
  • 收稿日期:1998-08-31 修回日期:1999-03-23 出版日期:1999-10-01
  • 通讯作者: 刘纯平,女,1972年12月出生,硕士生,自然地理学专业。
  • 基金资助:

    中国科学院“九五”重大项目“亚洲季风气候变化与全球变化研究”(编号:KZ951-A1-402-03-03)资助。

MICROPARTICLES IN MODERN GLACIERS AND CLIMATIC AND ENVIRONMENTAL CHANGES

LIU Chunping, YAO Tandong, XIE Shucheng   

  1. Lanzhou Institute of Glaciology and Geocryology,CAS,Lanzhou 730000,China
  • Received:1998-08-31 Revised:1999-03-23 Online:1999-10-01 Published:1999-10-01

现代冰川雪冰中的微粒是重建过去气候环境变化的一项重要替代性指标。根据前人对极地冰盖和山地冰川冰芯及雪坑样品中的微粒粒径、矿物特征和含量变化等研究成果,讨论了微粒粒径变化,微粒与火山活动、大气气溶胶的关系,以及冰芯测年、微粒来源等相关分析,认为微粒中的代表性矿物、火山玻璃、粗糙系数和粒径分布可作为确定微粒源区的指标;微粒含量的变化与大气环流、气温高低及干湿程度密切相关,微粒含量的高值对应冷干气候,反之为暖湿;大气环流加强时,微粒含量增加,反之减少。微粒研究还能获得如火山活动、人类影响等特殊事件的信息。

 Microparticles in modern glaciers is an important indices of climate and environment variation. Microparticles analysis can reveal the climatic and environmental changes in the past. In this paper, significance of microparticles analysis is simply introduced. According to exiting data,microparticles contain all kinds of information, such as microparticle source regions, the characteristics of microparticle changes, dating of ice cores, volcanic activities, aerosol and so on. Typical mineral in
different latitude, such as kaolinite and chlorite, tephra, the coarseness, size profile as indices, source area of microparticle may be determined. Base on typical mineral characteristics and size profile,microparticle potation region may be concluded. Moreover, source region will be studies further.Microparticle concentration variation is connected with dry-wet, temperature and atmospheric circulation.Microparticle concentration analysis indicated that microparticles concentration decreases with climate warming, which is consistent with the conclusion that there is more microparticles concentration in cold periods and less microparticles concentration in warming periods. During wet periods, microparticles concentration is low, during dry periods, microparticles concentration is high. The strength of
atmospheric circulation increases, microparticles concentration increases, conversely, it decreases.Microparticles analysis can also reveal special event, such as floating dust, sand-dust storms and volcanic activities,etc.

中图分类号: 

〔1〕Oeschger H.冰川和冰盖中的环境记录〔M〕.姚檀栋,等译.兰州:甘肃科学技术出版社,1993.
〔2〕Marshall E W. The stratigraphic distribution of particulate matter in the firn at Byrd station, Antarctica〔A〕. In :Wexler H, Rubin M J, Caskey J E eds. Antarctic Research〔C〕. Geophysical Monographs, 1962, 7: 185~196.
〔3〕Thompson L G. Analysis of the concentration of microparticles in an ice core from Byrd station, Antarctica〔R〕. The Ohio State University Research Foundation, Institute of Polar Studies, Report, 1973, 46: 34.
〔4〕Thompson L G, Hamilton W L, Bull C. Climatological implications of microparticle concentrations in the ice core from “Byrd”station, Western Antarctica〔J〕. Journal of Glaciology, 1975, 14 (72): 433~444.
〔5〕Taylor L D, Gliozzi J. Distribution of particulate matter in a firn core from Eights station, Antarctic〔J〕. Antarctic Research series, 1964, 2: 267~277.
〔6〕Bull C B B. Snow accumulation in Antarctica〔A〕. In: Quam Lo ed.Research in the Antarctic〔C〕. 1971. 367~421.
〔7〕Thompson L G. Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd station, Antarctica, Deep ice cores〔J〕. International Association of Hydrological Sciences Publication, 1977, 118: 351~364.
〔8〕Thompson M E. 911 years of microparticle deposition at the South Pole: A climatic interpretation〔R〕. The Ohio State University, Institute of Polar Studies, Report, 1980, 73:102.
〔9〕Thompson E M, Thompson L G. Glaciological interpretation of the microparticle concentration in the 905-meter Dome C core〔J〕. Antarctic Journal of the United States, 1980, (11):71~75.
〔10〕Hamilton W L. Microparticle deposition a polar ice sheets〔R〕. The Ohio State University Research Foundation,Institute of Polar Studies, Report, 1969, 29:77.
〔11〕Thompson E M. Microparticle record from Q-13:Preliminary report〔J〕. Antarctic Journal of the United States, 1981, (8): 89~90.
〔12〕Hamilton W L, Langway C C. A correlation of microparticle concentrations with oxygen isotope ratios in 700 year old Greenland ice〔J〕. Earth and Planetary Science Letters,1967, 3:363~366.
〔13〕Thompson L G, Thompson M E. Microparticle concentration variations linked with climatic change: Evidence from polar ice cores〔J〕. Science, 1981, 212:812~815.
〔14〕Gaudichet A, Angelis D, Lefevre R,et al. Mineralogy of insoluble paticles in the Vostok Antarctic ice core over the last climatic cycle (150 kyr)〔J〕. Geophysical Research Letters, 1988, 15(13): 1 471~1 474.
〔15〕Marshall F M. Stratigraphic use of particulate in Polar ice caps〔J〕. Bulletin of the Geological Society of America,1959, 70(12): 1 043.
〔16〕Thompson L G. Microparticle concentration in ice cores from Camp Century and Byrd Station〔J〕. Antarctic Journal of the United States, 1974, 249~250.
〔17〕Thompson L G, Thompson M E. Spatial distribution of microparticles with Antarctic snow-fall〔J〕. Annals of Glaciology, 1982, 3: 300~306.
〔18〕Thompson E M, Thompson L G. Microparticle analysis of the Ross Ice Shelf Q-13 core and preliminary results from the J-9 core〔J〕. Annals of Glaciology, 1982, 3: 211~215.
〔19〕Petit J R, Briat M, Royer A,et al. Ice age aerosol content from East Antarctic ice core samples and past wind strength〔J〕. Nature, 1981, 293 : 391~394.
〔20〕Briat M. Late glacial input of eolian continental dust in the Dome C ice core: additional evidence from individual microparticle analysis〔J〕. Annals of Glaciology, 1982, 3: 27~31.
〔21〕Angelis M D, Legrand M, Petit J R. Soluble and insoluble impurities along the 950 m deep Vostok ice core (Antarctica)- climatic implications〔J〕. Journal of Atmospheric Chemistry, 1984, (1): 215~239.
〔22〕Griffin R J. The distribution of clay minerals in the world ocean〔J〕. Deep-Sea Research, 1968, 15: 433~459.
〔23〕Gaudichet A, Petit J R, Lefevre R,et al. An investigation by analytical transmission electron microscopy of individual insoluble microparticles from Antarctic (Dome C) ice core samples〔J〕. Tellus, 1986, 38B: 250~261.
〔24〕Thompson E M. South Pole ice core processing and microparticle analysis〔J〕. Antarctic Journal of the United States, 1983, (12):118~119.
〔25〕Angelis M D, Barkov N I, Petrov V N. Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core〔J〕. Nature, 1987, 325: 318~321.
〔26〕Gayley R I, Ram M. Atmospheric dust in polar ice and the background aerosol〔J〕. Journal Geophysical Research,1985, 90: 12 921~12 925.
〔27〕Ram M, Gayley R I. Insoluble particles in Antarctic ice:background aerosol size distribution and diatom concentration〔J〕. Journal Geophysical Research, 1988, 93:8 378~8 382.
〔28〕Ram M, Gayley R I. Insoluble particles in polar ice:Identification and measurement of the in soluble background aerosol〔J〕. Geophysical Research Letters,1994, 21 (6): 437~440.
〔29〕Thompson L G, Davis M E, Thompson E M,et al. Pre-Incan agricultural activity recorded in dust layers in two tropical icecore〔J〕. Nature, 1988, 336: 763~765.

[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[7] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[8] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[9] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[10] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[13] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[14] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[15] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
阅读次数
全文


摘要