地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 185 -191. doi: 10.11867/j.issn.1001-8166.2003.02.0185

研究论文 上一篇    下一篇

典型地物波谱知识库建库与波谱服务的若干问题
苏理宏 1,李小文 1,2,王锦地 1,唐世浩 1   
  1. 1.北京师范大学遥感与GIS研究中心,北京100875;2.Center for Remote Sensing and Dept.of Geography,Boston University,Boston,02215,MA,USA
  • 收稿日期:2002-03-25 修回日期:2002-09-24 出版日期:2003-04-10
  • 通讯作者: 苏理宏 E-mail:lihongsu@xinhuanet.com
  • 基金资助:

    国家重点基础研究发展规划项目“地球表面时空多变要素的定量遥感理论及应用”(编号:G20000977);国家自然科学基金项目“用热点卫星数据研究陆面热点”(编号:49971059);863计划“中国典型地物波谱数据库”(编号:863-103-05-02)资助.

SOME PROBLEMS IN CONSTRUCTING THE GROUND OBJECT SPECTRAL KNOWLEDGE BASE AND ITS SERVICES

Su Lihong 1,Li Xiaowen 1,2,Wang Jindi 1,Tang Shihao 1   

  1. 1. Research Center of Remote Sensing and GIS, Beijing Normal University,Beijing 100875,China;2. Deptartment of Geography and Center for Remote Sensing, Boston University, Boston, MA 02215, USA
  • Received:2002-03-25 Revised:2002-09-24 Online:2003-04-10 Published:2003-04-01

地物波谱知识库的建立旨在满足应用需求。为达到数据的共享,波谱知识库应对遥感实验测量的波谱数据和相关信息如观测规范、实验环境有清楚的说明,即要有完备的元数据让用户知道波谱知识库中是什么样的数据。为弥补地面测量数据与用户需要数据的时间空间尺度差异,用于外延观测数据的遥感物理模型必不可少;这要求收集分析遥感物理模型,评价其适用条件并创建模型元数据,使用户了解在其工作条件下有何适用的模型,模型的依据是什么;同时波谱库使用遥感物理解析模型和计算机模拟模型完成植被参数的时间扩展和沿叶片-冠层-像元 3个层次的观测尺度空间扩展,从而产生像元尺度可见光到热红外波段的参考波谱。为实现因特网上的波谱知识共享,需要研究如何组织波谱数据和模型,让用户方便地远程检索实测的典型地物波谱数据,并可以实时获取由遥感物理模型外延的波谱数据。从上述 3个方面归纳了波谱库建设和服务需要解决的 6个问题。

The objective of the spectral knowledge base (spectrum library) is to facilitate remote sensing applications. The paper discusses the six problems that are required to solve in constructing the spectral knowledge base and its services. Firstly, in order to share data, the spectral knowledge base should show the measured spectral data and relative information such as the observation criterion and field campaign condition etc. In other words, it is necessary to have the integrated system of spectral and environmental data and the self-contained metadata. Secondly, for the sake of solving the discrepancy between the temporal and spatial scales of the measured spectral data and of remote sensing applications, it is essential to study quantificational descriptions of land surface parameters and approaches to convert the parameters between temporal and spatial scales. In the next place, because it is impractical to measure vegetation spectrum at all times during vegetation growth cycle, remote sensing physical models, which are used to interpolate and extrapolate the measured data, should be collected and the applicable conditions of these models will be evaluated. The remote sensing physical model, which maybe are analytic equations or computer simulation models, are used to extend vegetation parameters along temporal change, and compute the spectrum on three spatial scales such as leaf, canopy and remote sensing pixel from visible light to thermal infrared based on the measured spectral data, the extended vegetation parameters, and pixel components. Fourthly, the model metadata are defined and collected so that the users can know which models in the spectral knowledge base is suitable to their tasks and why they are. Moreover, building the model run-time support software based on metadata of data and models is an effectual approach to extract the parameters for the models and run the models automatically. Finally, in order to sharing data and model on Internet, it is need to research how manage the data and models so that the users can obtain the data and models on Internet easily and the interpolated and extrapolated the spectral data real-timely.

中图分类号: 

[1] Wharton S W. Spectral-knowledge-based approach for urban land-cover discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25(3): 272-282. 

[2] Li Xiaowen. Bidirectional reflectance and angular signature of objects [J]. Remote Sensing of Environment China, 1989, 4(1): 67-72. [李小文. 地物的二向性反射和方向谱特征 [J]. 环境遥感, 1989, 4(1): 67-72.]

[3] Tong Qingxi, Tian Guoliang. Spectra and Analysis of Typical Earth Objects of China[M]. Beijing: Science Press, 1990. [童庆禧, 田国良. 中国典型地物波谱及其特征分析[M]. 北京: 科学出版社, 1990.]

[4] Lyon R J P. Infrared spectral signatures—A field geological tool. Proceedings of 5-th Symposium on Remote Sensing of Environments [C]. Ann Arbor, USA, 1966.

[5] Leeman V. The NASA Earth Resources Spectral Information System: A Data Compilation[M]. NASA-CR-115757, Willow Run Lab, Michigan University, 1971.

[6] http://speclab.cr.usgs.gov/ spectral.lib04/spectral-lib04.html

[7] Grove C I, Hook S J, Paylor E D. Laboratory Reflectance Spectra for 160 Minerals 0.4~2.5 Micrometers[Z]. JPL Publication 92-2,Jet Propulsion Laboratory, Padadena, CA, USA, 1992.

[8] Salisbury J W, Walter L S, Vergo N, et al. Infrared (2.1-25 Micrometers) Spectra of Minerals[M]. Hopkins: Johns Hopkins University Press, 1991.

[9] www-eosdis.ornl.gov/FIFE/FIFE_About.html

[10] www-eosdis.ornl.gov/BOREAS/bhs/BOREAS_Home.html

[11] Center for Space Science and Technology of Chinese Academy of Sciences. Data Compilation of Chinese Earth Resources Spectral Information [M].Beijing: Energy Press, 1987. [中国科学院空间科学技术中心. 中国地球资源光谱信息资料汇编[M]. 北京: 能源出版社, 1987.]

[12] Chen Shupeng, Tong Qingxi, Guo Huadong. Mechanism of Remote Sensing Information [M]. Beijing: Science Press, 1998. [陈述彭, 童庆禧, 郭华东. 遥感信息机理研究[M]. 北京:科学出版社, 1998.]

[13] Tian Qingjiu, Yu Tao, Zheng Lanfen, et al. Study on spectrometer calibration experiment research[J]. Spectroscopy and Spectral Analysis, 1997, 17(6):113-117.[田庆久, 余涛, 郑兰芬,. 地物光谱仪定标实验研究[J]. 光谱学与光谱分析, 1997, 17(6):113-117.]

[14] Li Xiaowen, Wang Junfa, Wang Jindi, et al. Multiangle and Thermal Infrared Remote Sensing[M]. Beijing: Science Press, 2001. [李小文, 王骏发, 王锦地,.多角度与热红外对地遥感[M]. 北京: 科学出版社, 2001.]

[15] Zhao Dongzhi, Liu Yuji. Spectral Features of Chinese Polluted Water[M]. Beijing: Ocean Press, 2001. [赵冬至, 刘玉机. 中国污染水体光谱特征[M]. 北京: 海洋出版社, 2001.]

[16] Center for Remote Sensing in Geology of the Ministry of Geology and Mineral Resources. Airborne Thermal-infrared Remote Sensing Image Album [M]. Beijing: Geological Publishing House, 1988. [地质矿产部地质遥感中心. 航空热红外遥感图像集[M]. 北京: 地质出版社, 1988.]

[17] Wang Renchao, Huang Jingfeng. Rice Yield Estimation Using Remote Sensing Data[M]. Beijing: China Agriculture Press, 2002. [王人潮,黄敬峰.水稻遥感估产[M]. 北京: 中国农业出版社, 2002.]

[18] Tong Qingxi. Development and Application of Hyperspectral Remote Sensing in China[A]. In: Proceeding of SPIE [C]. Beijing, 1998, 3502: 2-11.

[19] Li Xiaowen, Wang Jindi, Alan H Strahler. Scale effects and scaling-up by geometric-optical model [J]. Science in China(E), 2000, 43(supp): 17-22. [李小文,王锦地, Strahler A H. 尺度效应及几何光学模型用于尺度纠正[J]. 中国科学(E), 2002, 30 (增刊): 12-17.]

[20] Su Lihong, Li Xiaowen, Huang Yuxia. An review on scale in remote sensing[J]. Advances in Earth Sciences,2001,16(4) : 544-548. [苏理宏,李小文,黄裕霞. 遥感尺度问题研究进展 [J]. 地球科学进展,2001,16(4): 544-548.]

[21] Su Lihong, Huang Yuxia, Ke Zhengyi. Study on Method-Metadata and its management for Resources and Environment Information System [J]. Resource Sciences, 2000, 22(6): 14-17. [苏理宏,黄裕霞,柯正谊. 资源环境信息系统应用模型方法元数据初步研究 [J]. 资源科学,2000, 22(6): 14-17.]

[1] 凌晓良,LEEBelbin,张洁,朱建钢,张侠,汪大立. 澳大利亚南极科学数据管理综述[J]. 地球科学进展, 2007, 22(5): 532-539.
阅读次数
全文


摘要