地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 175 -177. doi: 10.11867/j.issn.1001-8166.2003.02.0175

研究论文 上一篇    下一篇

新世纪的卫星大地测量学和地球科学
陈俊勇   
  1. 国家测绘局,北京 100830
  • 收稿日期:2002-09-06 修回日期:2002-09-29 出版日期:2003-04-10
  • 通讯作者: 陈俊勇 E-mail:jychen@sun.ihep.ac.cn

SATELLITE GEODESY AND GEOSCIENCES IN THE NEW MILLENNIUM

Chen Junyong   

  1. State Bureau of Surveying and Mapping, Beijing 100830,China
  • Received:2002-09-06 Revised:2002-09-29 Online:2003-04-10 Published:2003-04-01

经典卫星大地测量学着重研究地球几何形状、定向及其变化,并在实际应用中关注在地球表面上点的定位、重力及其变化。而现代卫星大地测量则不仅仅能在地表上长时间以10-9精度定位,而且它已远远超过原来经典的目标,已经涉及多种学科领域,可以提供和处理涉及原来是地球动力学、行星学、大气学、海洋学、板块运动学和冰川学等其他学科所需的信息,提供多种学科领域长期以来很难取得的数值和有可能解决它们相应的困惑。当然为了达到这些目标卫星大地测量学仍然还有众多的理论和实践的问题需要思考和解决。然而可以预期,卫星大地测量学将与其他学科会有更多的交叉,不仅在大地测量学,而且在地球科学中会具有强大生命力,并将更大地影响和促进地球科学、环境科学和行星科学的发展。

Scientific object of classical satellite geodesy is the determination of the geometric figure, orientation and their variations of the earth. Main practices of modern satellite geodesy are in the field of positioning on the earth surface with a relative precision of 1 part per billion and consistentover decades. Whereas the object of modern satellite geodesy is far beyond the object and the practices mentioned and become a interdisciplinary geodetic science. Now the modern satellite geodesy can provide and process the information necessary for other geosciences, such as geodynamics, planetology, atmospheric sciences, oceanography, tectonic movement and glaciology and so on. The modern satellite can also provide the data which are usually difficult collected and achieved by the other geosciences mentioned. Now the valuable data may solve some problems which are difficult solved in these geosciences before. As a matter of fact the influence of modern satellite geodesy is enlarging, with impressive achievements in the last few decades in many diverse areas, and becomes an interdisciplinary geoscience, and it will give more influence and promotion on the other geosciences, planet sciences, and environment sciences. Examples include enabling determination of crustal deformation and strain with unprecedented accuracy at high time resolution; water vapor monitoring; satellite orbit determination; gravity modeling and its variation with time. Of course in order to meet this objects there are a lot of theoretical and practical problems in satellite geodesy are still to be solved. However it will be sure satellite geodesy will not only be taken as a powerful position in geodesy but also in geosciences.

中图分类号: 

[1] Rummel R. Space Geodesy and Earth Sciences[C]. Berlin: Springer, Vistas for Geodesy in the New Millennium, IAG Symposium, 2002,125: 584-589.

[2] Dickey J O. Interdisciplinary Space Geodesy: Challenges in the New Millennium[C]. Berlin: Springer, Vistas for Geodesy in the New Millennium, IAG Symposium, 2002,125: 590-594.

[3] Nerem R S, Lerch F J, Marshall J A, et al. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2[J]. JGR, 1994, 99(12): 421-424.

[4] Schwintzer P, Reigber C H, Bode A, et al. Long-wavelength global gravity models: GRIM4-S4, GRIM4-C4 [J]. JG, 1997, 71(4): 189-208.

[5] Lemoine F G, Kenyon S C, Factor J K, et al. The Development of the joint NASA GSFC and NIMA Geopotential Model EGM96[R]. Maryland: Goddard Space Flight Center, 1998.312- 330.

[6] Dickey J O, Bently C R, Bilham R, et al. Satellite gravity and the geosphere: Contribution to the solid Earth and its fluid envelope[J]. EOS, 1998, (20): 237-243.

[7] HRC. Satellite Geodesy and the Geosphere: Contribution to the Study of the Solid Earth and its Fluid Earth[M]. Washington: Natural Academie Press, 1997. 60-111.

[8] Wahr J, Molenaar M, Bryan M F. Time-variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. JGR, 1998,103: 30 205-30 230.

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[3] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[4] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[5] 孙和平, 孙文科, 申文斌, 申重阳, 祝意青, 付广裕, 吴书清, 崔小明, 陈晓东. 地球重力场及其地学应用研究进展——2020中国地球科学联合学术年会专题综述[J]. 地球科学进展, 2021, 36(5): 445-460.
[6] 栾威, 申文斌. 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021, 36(5): 461-471.
[7] 朱栋, 高世腾, 朱欣欣, 吴彬, 程冰, 林强. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
[8] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[9] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[10] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[11] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[12] 赵丕, 何志堂, 罗铖, 康胜军, 史志刚. CG6型相对重力仪比例因子两种标定结果比对分析[J]. 地球科学进展, 2021, 36(5): 528-535.
[13] 粟多武, 吴书清, 李春剑, 吉望西, 徐进义, 王启宇, 冯金扬, 胡若, 牟丽爽. 国家重力计量参考网的初步建立研究[J]. 地球科学进展, 2021, 36(5): 536-542.
[14] 房婷婷, 付广裕. 卫星重力与地球重力场的文献计量分析[J]. 地球科学进展, 2021, 36(5): 543-552.
[15] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
阅读次数
全文


摘要