地球科学进展 ›› 2001, Vol. 16 ›› Issue (3): 359 -366. doi: 10.11867/j.issn.1001-8166.2001.03.0359

综述与评述 上一篇    下一篇

遥感技术在陆面过程研究中的应用进展
高峰 1,2,王介民 1,孙成权 2,马耀明 1
  
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州  730000;
    2.中国科学院资源环境科学信息中心,甘肃 兰州  730000
  • 收稿日期:2000-06-23 修回日期:2000-12-26 出版日期:2001-06-01
  • 通讯作者: 高峰(1965-),男,河南省平舆县人,副研究员,主要从事微波遥感应用与陆面过程模拟研究。 E-mail:jwphdg@ns.lzb.ac.cn

ADVANCES IN APPLICATION OF REMOTE SENSING TECHNOLOGY TO LAND SURFACE PROCESSES RESEARCH

GAO Feng 1,2,WANG Jie-min 1,SUN Cheng-quan 2,MA Yao-ming 1
  

  1. 1.Cold and Arid Regions Environmental and Engineering Research Institute,CAS,Lanzhou730000,China;
    2.The Scientific Information Center for Resources&Environment,CAS,Lanzhou730000,China
  • Received:2000-06-23 Revised:2000-12-26 Online:2001-06-01 Published:2001-06-01

探讨了当前陆面过程(LSP)研究的特点,指出遥感在陆面过程研究中的应用以及陆面过程国际合作实验是突出的特点,进而对遥感技术的陆面参数获取、地表能量通量的计算以及与LSP模式的结合研究及进展进行了综述。根据不同特征的地表参数选择光学遥感或微波遥感已成共识,而综合利用不同遥感数据获取同一种地表参数也已成为研究热点,当前及今后发射的携载多种遥感仪器的众多遥感卫星为此项研究提供了条件;遥感与LSP模式的结合研究是遥感在陆面过程研究中深入应用的一个方面,国际陆面过程合作实验是这项研究的重要保证。

At the present time remote sensing technology, because of its prominent advantages, is playing an important role in land surface processes (LSP)research. Main characteristics of land surface processes research can be summarized as follow: (1)more and more meteorologists pay attention to LSP research;(2)international cooperative research on LSP become very active;(3)interdisciplinary cooperative research between different research fields is being improved to LSP research;(4)remote sensing technology becomes one of necessary tools in LSP research. With the development of remote sensing technology, more and more land surface parameters such as albedo, emissivity, land surface temperature(LST) and soil moisture etc. can be retrieved from satellite remotely sensed data, and the retrieval precise of the parameters become better and better. Optical remote sensing (including visible, near infrared and thermal infrared remote sensing) prove to be effective in retrieving the parameters such as albedo, LST and emissivity, and a lot of retrieval algorithms have been developed. For example, LST, an important land surface parameter, can be estimated well by means of split window algorithms from NOAA/AVHRR data. In contrast to optical remote sensing, microwave remote sensing (both active and passive) has great advantages in retrieving soil moisture. By using the relation between σ0,backscattering coefficient and, soil moisture or the relation between T B, brightness temperature of radiometer and soil moisture, we can estimate the value of soil moisture from microwave remotely sensed data. The capacity of the microwave sensors to penetrate non raining clouds makes them very attractive for use as soil moisture sensors. After reviewing the various algorithms of remote sensing to retrieve land surface parameters and calculate surface energy fluxes and combination of remote sensing with land surface processes models, we concluded that:(1) it is known to all to choose optical or microwave remote sensing according to the feature of the parameter;(2) it becomes a focus that one parameter is derived by various kinds of remote sensing data;(3) studing on combination of remote sensing with LSP models will be improved by the international land surface processes experiments.

中图分类号: 

[1]  Wang Jiemin. Land surface process experiment and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX [J]. Plateau Meteorology ,1999,18(3):280-294.[王介民.陆面过程实验和地气相互作用——从HEIFI到IM-GRASS和GAME—Tibet/TIPEX[J].高原气象, 1999, 18(3):280-294.]
[2]  Sellers P J,Hall F G,Asrar G,et al. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment(FIFE)[J]. J G R, 1992, 97(D17):18 345-18 371.
[3]  Hu Yinqiao, Gao Youxi. Some new understandings of processes at the land surface in arid area from the HEIFE[J]. Acta Meteorologica Sinica, 1994, 52(3): 285-296.[胡隐樵,高由禧.黑河实验(HEIFE)——对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.]
[4]  Niu Guoyao, Hong Zhongxiang, Sun Shufen. Status and developmental trend of land surface processes study[J]. Advances in Earth Sciences, 1997, 12(2): 20~25.[牛国跃,洪钟祥,孙淑芬.陆面过程研究的现状与发展趋势[J].地球科学进展,1997,12(2):20-25.]
[5]  Schmugge T,Hook S J,Coll C. Recovering surface temperature and emissivity from thermal infrared multispectral data[J]. R S Environ, 1998, 65:121-131.
[6]  Pinty B, Ramond D. Amethod for the estimate of broadband directional surface albedo from a geostationary satellite[J].Journal of Climate and Applied Meteorology, 1987, 26: 1709-1 722.
[7]  Nunez M, Skirving W J,Viney N R. A technique for estimating regional surface albedo using geostationary satellite data[J]. Joural of Climatology, 1987, 7: 1-11.
[8]  Brest C J, Goward S N. Deriving surface albedo from narrow band satellite data[J]. Int J R S, 1987,8:351-367.
[9]  Saunders R W. The determinination of broad band surface albedo from AVHRR visible near-infrared radiances[J]. Int J R S,1990,11:49-67.
[10]  Wu Aisheng, Zhong Qiang. Second variation of surface albedo and vegetation index over Heihe experiment area [J].Plateau Meteorology, 1992, 11(4): 155-162.[吴艾笙,钟强.黑河地区地表反射率与植被指数的季节变化[J].高原气象,1992,11(4):155-162.]
[11]  Wang Jiemin, Ma Yaoming. The study of processes in the heterogeneous landscape of HEIHE with the aid of satellite remotesensing[J]. Remote Sensing Technology and Application, 1995, 10(3): 19-26.[王介民,马耀明.卫星遥感在非均匀陆面过程研究中的应用[J].遥感技术与应用,1995,10(3):19-26.]
[12]  Price J C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer[J]. J G R, 1984, 89: 7 231-7 237.
[13]  Prata A J, Platt C M R.Land surface temperature measurements from the AVHRR[A]. In: Proceedings of the 5th AVHRR Data Users Meeting, Tromso, Norway [ C ].1991.433-438.
[14]  Ulivri C, Castronwvo M M,Frandoni R,et al.Asplit-window algorithm for estimating land surface temperature from satellites[A]. In: COSPAR[C]. 27 Aug-5 Sep,WashingtonD C,1992.
[15]  Vazquez D P, Olmo Reyes F J, Arbdedas L A. A comparatuve study of algorithms for estimating land surface temperature from AVHRR data[J]. R S Environ, 1997,62:215-222.
[16]  Schmugge T, Hook S J, Coll C. Recovery surface temperature and emissivity from thermal infrared multispectral data[J]. R S Environ, 1998,65:121-131.
[17]  Coll C, Casellos V A. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data:Validation and algorithm comparision[J].J G R,1997,102(D14):16 697-16 713.
[18]  Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface[J]. Int J R S, 1993,14(6): 1 119-1 131.
[19]  Liu Dongqi, Wang Jiemin. Estimation of the angular variation of the land surface emissivity in heterogeneous areas with the ATSR/ERS-1 data[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 613-622.[刘东琦,王介民.利用ATSR/ERS-1资料研究复杂下垫面比辐射率的变化[J].大气科学,1999,23(5):613-622.]
[20]  Fassnacht K S, Goower S T, Mackenzie M O,et al. Estimating the Leaf Aera Index of North Central Wisconsin forests using the Landsat Thematic Mapper[J]. R S Environ, 1997,61:229-245.
[21]  Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28:940-948
[22]  Jia Li, Wang Jiemin. The area distribution and seasonal variation of NDVI over Heihe area[J]. Plateau Meteorology,1999, 18(2): 245~249.[贾立,王介民.黑河实验区地表植被指数的区域分布及季节变化[J].高原气象,1999,18(2):245-249.]
[23]  Nieuwenhuis G J A, Amid E H, Thunnissen H A M. Estimation of regional ET of arable crops from thermal infrared images[J]. Int J R S, 1985, 6: 1 319-1 334.
[24]  Vidal A, Perrier A. Analysis of a simplified relation for estimating daily evapotranspiration from satellite thermal IR data[J]. Int J R S, 1990, 11: 1 327-1 337.
[25]  Casselles V, Artigao M M,Hurtado E,et al. Mapping actual evapotranspiration by combining Landsat TM and NOAA-AVHRR images: Application to the Barrax area, Albacete,Spain[J]. R S Environ, 1998,63:1-10.
[26]  Moran M S,Clarke T H, Inone Y,et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. R S Environ, 1994, 49:246-263.
[27]  Jia Li, Wang Jiemin, Menenti M. Estimation of area roughness length for momentum using remote sensing data and measurement in field[J]. Chinese Journal of Atmospheric Sciences, 1999, 23(5): 632-640.[贾立,王介民,Menenti M.卫星遥感结合地面资料对区域表面动量粗糙度的估算[J].大气科学,1999,23(5):632-640.]
[28]  Zhang Junrong, Wang Liwei, Zhang Dehai. The microwave dielectric constant of canopy and soil[J]. Remote Sensing Technology and Application,1995, 10(3): 40-50.[张俊荣,王丽巍,张德海.植被和土壤的微波介电常数[J].遥感技术与应用,1995,10(3):40-50.]
[29]  Chanzy A. Basic soil surface characteristics derived from active microwave remote sensing[J]. Remote Sensing Review,1993,7:303-320.
[30]  Li Xingchao. A study on soil moisture monitoring by using microwave remote sensing[J]. Remote Sensing Technology and Application, 1995, 10(4): 1-8.[李杏朝.微波遥感监测土壤水分的研究初探[J].遥感技术与应用,1995,10(4):1-8.]
[31]  Sano E E, Moran M S, Huete A R,et al. C-and Multiangle Ku-band SAR data for bare soil moisture estimation in agricu ltural areas[J]. R S Environ, 1998, 64:77-90.
[32]  Rao K S,Raju S,Wang J R.Estimation of soil moisture and surface roughness parameters from backscatter coefficients[J]. IEEE Trans Geosci Remote Sensing, 1993, 31 (5):1 094-1 099.
[33]  Narayanan R M, Homer J R, St Germain K M. Simulation study of a robust algorithm for soil moisture and surface roughness estimation using L-Band radar backscatter [J].Geocarto International, 1999,14(1):5-13.
[34]  Schmugge T J,Gloersen P, Wilheit T.et al. Remote sensing of soil moisture with microwave radiometers[J]. J G R,1974, 79(2):317-323.
[35]  O' Neill P E.Microwave remote sensing of soil moisture: A comparison of results from different truck and aircraft platforms[J]. Int J Remote Sensing, 1985, 6(7):1 125-1 134.
[36]  Schmugge T J, O' Neill N T, Wang J R. Passive microwave soil moisture research[J]. IEEE Trans Geosci Remote Sensing, 1986, GE-24(1):12-20.
[37]  Choudhury B J, Schmugge T J,Newton R W,et al. Effect of surface roughness on the microwave emission from soils[J].J G R, 1979, 84. 5 699-5 706.
[38]  Wang J R. Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometer[J]. R S Environ,1985, 17:141-151.
[39]  Teng W L, Wang J R, Doraiswamy P C. Relationship between satellite microwave radiometric data, antecedent precipitation index ,and regional soil moisture[J]. Int J R S,1993, 14(13):2 483-2 500.
[40]  Koike T. Study on spatial and temporal variability of surface wetness on the Tibetan Plateau by using the satellite-based microwave radiometer[J]. Annual J Hydraulic Eng,1997,41:915-919.
[41]  Jackson T J. Soil moisture at regional scales using microwave radiometry: the southern Great Plains Hydrology Experiment[J]. IEEE Trans Geosci Remote Sensing, 1999, 37 (5):2 136-2 151.
[42]  McFarland M J, Miller R L, Neale C M U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures [J]. IEEE Trans Geosci Remote Sensing, 1990,28(5): 839-845.
[43]  Choudhury B J, Tucker C J. Monitoring global vegetation using Nimbus-7 37GHz data: some empirical relations[J].Int J R S, 1987, 8(7): 1 085-1 090.
[44]  Felde G W. The effect of soil moisture on the 37GHz microwave polarization difference index(MPDI)[J]. Int J R S,1998, 19(6):1 055-1 078.
[45]  Kustas W P,Daughtry C S T,Van Oevelen P J. Analytical treatment of the relationship between soil heatflux/net rediation ratio and vegetation indices[J].R S Environ,1993,46:319-330.
[46]  Ma Yaoming, Wang Jiemin, Menenti M,et al. The distribution and seasonal variation of regional net radiation in HEIFE area[J]. Chinese Journal of Atmospheric Sciences, 21(6):743-749.[马耀明,王介民,Menenti M等.黑河实验区地表净辐射区域分布及季节变化[J].大气科学,1997,21(6):743-749.]
[47]  Kustas W P, Zhan X, Schmugge T J. Combining optional and microwave remote sensing for mapping energy fluxes in a semiarid watershed[J]. R S Environ, 1998,64: 116-131.
[48]  Kaneko D,Hino M. Proposal and investigation of a method or estimating surface energy balance in regional forests using TM derived vegetation index and observatory routine data[J]. Int J R S, 1996, 17(6): 1 129-1 148.
[49]  Jackson T J. Soil water modeling and remote sensing[J].IEEE Trans Geosci Remote Sensing, 1986, 24(1):37-46.
[50]  Bernard R, Vaudlin M,Vidal-Madjar D. Possible use of active microwave remote sensing data for prediction of regional evaporation by numerical simulation of soil water movement in the unsaturated zone[J].Water Resource Research,1981,17(6):1 603-1 610.
[51]  England A W. Radiobrightness of diurnally heated, freezing soil[J]. IEEE Trans Geosci Remote Sensing, 1990, 28: 464-476.
[52]  Liou Y A, England A W. Annual temperature and radiobrightness signature for bare soil[J]. IEEE Trans Geosci Remote Sensing, 1996,34(4): 981-990.
[53]  Liou Y A, England A W. A land surface process/radio-brightness model with coupled heat and moisture transport in soil[J]. IEEE Trans Geosci Remote Sensing, 1998,36(1): 273-285.
[54]  Liou Y A, England A W. A land surface process/radio-brightness model with coupled heat and moisture transport for freezing soils[J]. IEEE Trans Geosci Remote Sensing,1998,36(2): 669-330.
[55]  Liou Y A, Galantowicz J F, England A W. A land surface process/radiobrightness model with coupled heat and moisture transport for Prairie grassland[J]. IEEE Trans Geosci Remote Sensing, 1999,37(4):1 305-1 312.

[1] 周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
[2] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[3] 于文涛, 李静, 柳钦火, 曾也鲁, 尹高飞, 赵静, 徐保东. 中国地表覆盖异质性参数提取与分析[J]. 地球科学进展, 2016, 31(10): 1067-1077.
[4] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[5] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[6] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[7] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[8] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[9] 陈书林,刘元波,温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
[10] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[11] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[12] 蔡福,周广胜,李荣平,明惠青. 陆面过程模型对下垫面参数动态变化的敏感性分析[J]. 地球科学进展, 2011, 26(3): 300-310.
[13] 刘元波,傅巧妮,宋平,赵晓松,豆翠翠. 卫星遥感反演降水研究综述[J]. 地球科学进展, 2011, 26(11): 1162-1172.
[14] 蒋维楣,苗世光,张宁,刘红年,胡非,李磊,王咏薇,王成刚. 城市气象环境与边界层数值模拟研究[J]. 地球科学进展, 2010, 25(5): 463-473.
[15] 吴炳方,蒙继华,李强子,张飞飞,杜鑫,闫娜娜. “全球农情遥感速报系统(CropWatch)”新进展[J]. 地球科学进展, 2010, 25(10): 1013-1022.
阅读次数
全文


摘要