地球科学进展 ›› 2009, Vol. 24 ›› Issue (5): 488 -496. doi: 10.11867/j.issn.1001-8166.2009.05.0488

综述与评述 上一篇    下一篇

对流层大气氧化性研究进展
林云萍,赵春生   
  1. 北京大学物理学院大气科学系,北京  100871
  • 收稿日期:2009-02-04 修回日期:2009-03-25 出版日期:2009-05-10
  • 通讯作者: 林云萍 E-mail:yplin@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目“华北地区高相对湿度下气溶胶的吸湿增长特性及其对云微物理特性研究”(编号:40875001)资助.

The Oxidation in the Troposphere: A Review

Lin Yunping, Zhao Chunsheng   

  1. Department of Atmospheric Sciences, School of Physics, Peking University, Beijing  100871, China
  • Received:2009-02-04 Revised:2009-03-25 Online:2009-05-10 Published:2009-05-10

      对流层大气氧化性是对流层大气自我清洁能力的一个重要指标,对流层中大多数痕量气体都是通过氧化过程清除的。回顾近半个世纪以来对流层大气氧化性的研究历史,对流层大气氧化性的研究无论是从测量技术还是模式研究方面都已取得了一定的进展。工业革命以来,由于人类活动的影响,CO、NOx和碳氢化合物等大气污染物排放增多,使得全球对流层大气OH浓度呈下降趋势,未来对流层大气氧化性的变化很大程度上也取决于这些气体的排放情况。利用全球三维大气化学传输模式MOZART研究中国地区对流层大气OH自由基的分布和变化趋势表明,与全球OH自由基变化趋势不同,近10年来中国东部地区OH自由基浓度趋于增加。未来对流层大气氧化性研究的关键问题仍是OH自由基测量技术的提高问题,OH自由基观测结果是完善对流层光化学机制和改进大气化学模式的先决条件。

       The tropospheric oxidation is an important indicator of the cleansing capacity of the atmosphere. Most trace gases emitted into the atmosphere are removed by oxidizing chemical reactions involving ozone and the hydroxyl free radical. The  research history of tropospheric OH including the fundamental reactions, measurement techniques and the long-term trend is reviewed in this paper. Due to the increased emissions of CO, NOx(=NO+NO2) and hydrocarbons by human activities, global mean OH concentrations have decreased since pre-industrial times, and the future trend of tropospheric OH still depends on the emissions of CO, NOx(=NO+NO2) and hydrocarbons. Using a 3-D global chemistry and transport model (MOZART), the distributions and trend of tropospheric OH over China and its neighborhood are studied. The results show that, consistent with variations in sunlight and water vapor, the concentrations of tropospheric OH over China increase gradually from winter to summer. In addition, by reason of the various emissions strength of OH precursors or sinks, such as ozone, CO and NOx, the highest concentrations of OH in July arise in North China and Pearl River Delta, while the lowest concentrations occur in those plateau areas in West China. Analysis of the impacts of various emissions of air pollutants on tropospheric OH in East China reveals a significant increase of tropospheric OH as a result of the pronounced increase of NOx emissions in China. Looking to the future, there is urgent need for more observations of tropospheric OH to improve and ultimately validate models and further understand the oxidation processes in our atmosphere.



中图分类号: 

[1] Jacob D J. Introduction to Atmospheric Chemistry[M]. New Jersey: Princeton University Press, 1999.
[2] Qin Yu, Zhao Chunsheng. The Basic of Atmospheric Chemistry[M]. Beijing: Meteorological Press, 2003.[秦瑜,赵春生.大气化学基础[M]. 北京: 气象出版社, 2003.]
[3] Zheng Xiangdong, Zhou Xiuji, Guo Song. Change of Atmospheric Ozone in China and its Impact on Climate and Environment 1: Measurement of Ozone Total Column and UV-B Radiation by Brewer Ozone Spectrometer[M]. Beijing: Meteorological Press, 1996: 107-110.[郑向东,周秀骥,郭松.中国地区大气臭氧变化及其对气候环境的影响(一): Brewer臭氧光谱仪对臭氧总量及UV-B辐射的测量[M]. 北京: 气象出版社,1996: 107-110.]
[4] Zhao C,Tie X,Wang G,et al. Analysis of air quality in eastern China and its interaction with other regions of the world[J].Journal of Atmospheric Chemistry,2006,55:189-204.
[5] Tie X, Brasseur G, Zhao C, et al. Chemical characterization of air pollution in eastern China and the eastern United States[J].Atmospheric Environment,2006,40:2 607-2 625.
[6] Tang W, Zhao C, Geng F, et al. Study of ozone  weekend effect′ in Shanghai[J].Science in  China (Series D),2008, 51(9):1 354-1 360.
[7] Ma J, van Aardenne J A. Impact of different emission inventories on simulated tropospheric ozone over China: A regional chemical transport model evaluation[J].Atmospheric Chemistry and Physics,2004, 4: 877-887.
[8] Liu Y, Li W, Zhou X, et al. The possible influence of the increasing anthropogenic emissions in India on tropospheric ozone and OH[J].Advance in Atmospheric Science,2003, 20(6): 968-977.
[9] Thompson A M. The oxidizing capacity of the earth′s atmosphere: Probable past and future changes[J]. Science,1992,256:1 157-1 165.
[10] Wang Y, Jacob D J. Anthropogenic forcing on tropospheric O3 and OH since preindustrial times[J].Journal of Geophysical Research,1998,103:31 123-31 136.
[11] Tian Honghai, Zhu Mei, Tang Xiaoyan. Progress of study on the measurement of atmospheric hydroxyl radicals[J].Chongqing Enviornmental Science,1997,19(3):14-18.[田洪海,朱玫,唐孝炎.大气氢氧自由基测量技术研究进展[J].重庆环境科学,1997,19(3):14-18.]
[12] Song Yanling, Xu li. Advance in the study of atmospheric hydroxyl radicals(OH)[J].Meteorological Science and Technology,2002, 30(5): 262-265.[宋艳玲,许黎.大气中氢氧根(OH)自由基研究进展[J].气象科技,2002, 30(5): 262-265.]
[13] Jia Long, Ge Maofa, Zhuang Guoshun,et al. Advances in the study of tropospheric OH and HO2[J]. Chemistry,2005,10:736-744.[贾龙,葛茂发,庄国顺,等.对流层中的OH和HO2自由基的研究进展[J]. 化学通报, 2005,10:736-744.]
[14] Bates D R, Witherspoon A E. The photochemistry of some minor constituents of the earth′s atmosphere (CO2, CO, CH4, N2O)[J].Monthly Notices of the Royal Astronomical Society,1952,112:101.
[15] Levy H II. Tropospheric OH: In the beginning[J].Newsletter of IGAC, 2000, 21: 1-2.
[16] Cadle R D,Allen E R. Atmospheric photochemistry[J].Science,1970, 167: 243-249.
[17] Weinstock B. Carbon monoxide: Residence time in the atmosphere[J].Science,1969, 166: 224-225.
[18] Levy H II. Normal atmosphere: Large radical and formaldehyde concentrations predicted[J].Science,1971, 173: 141-143.
[19] Logan J A, Prather M J, Wofsy S C, et al. Tropospheric chemistry: A global perspective[J].Journal of Geophysical Research,1981,86:7 210-7 254.
[20] Brune W. OH and HO2: Source, interactions with nitrogen oxides and ozone production[J].Newsletter of IGAC,2000,21:3-5.
[21] Prinn R G. The cleansing capacity of the atmosphere[J].Annual Review of Environment and Resources,2003, 28: 29-57.
[22] Heard D E, Pilling M J. Measurement of OH and HO2 in the troposphere[J].Chemical Reviews,2003,103:5 163-5 198.
[23] Mckeen S A, Mount G, Eisele F, et al. Photochemical modeling of hydroxyl and its relationship to other species during the tropospheric OH photochemistry experiment[J].Journal of Geophysical Research,1997,102:6 467-6 493.
[24] Spivakovsky C M, Logan J A, Montzka S A, et al.Three-dimensional climatological distribution of tropospheric OH: Update and evaluation[J].Journal of Geophysical Research,2000, 105: 8 931-8 980.
[25] Prinn R G, Weiss R F, Miller B R, et al. Atmospheric trends and liftetime of CH3CCl3 and global OH concentrations[J].Science,1995,269:187-192.
[26] Prinn R G, Huang J, Weiss R F, et al. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades[J].Science,2001,292:1 882-1 888.
[27] Krol M, Jan van Leeuwen P, Lelieveld J. Global OH trend inferred from methylchloroform measurements[J]. Journal of Geophysical Research,1998,103:10 697-10 711.
[28] Krol M, Lelieveld J. Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)[J].Journal of Geophysical Research,2003, 108(D3): 4125, doi:10.1029/2002JD002423.
[29] Dentener F, Peters W, Krol M, et al. Inter-annual variability and trend of CH4 lifetime as a measure for OH changes in the 1979-1993 time period[J].Journal of Geophysical Research,2003, 108 (D15), 4442, doi:10.1029/2002JD002916.
[30] Bousquet P, Hauglustaine D A, Peylin P, et al. Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform[J].Atmospheric Chemistry and Physics,2005,5:2 635-2 656.
[31] Prinn R G, Huang J, Weiss R F, et al. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century[J].Geophysical Research Letters,2005, 32, L07809, doi: 10.1029/2004GL022228.
[32] Volz A, Ehhalt D H, Derwent R G. Seasonal and latitudinal variation of 14CO and the tropospheric concentration of OH radicals[J].Journal of Geophysical Research,1981,86:5 163-5 171.
[33] Mak J E, Brenninkmeijer C A M, Tamaresis J. Atmospheric 14CO observations and their use for estimating carbon monoxide removal rates[J].Journal of Geophysical Research,1994,99:22 915-22 922.
[34] Mak J E, Southon J R. Assessment of tropical OH seasonality using atmospheric (CO)-C-14 measurements from Barbados[J].Geophysical Research Letters,1998,25:2 801-2 804.
[35] Quay P, King S, White D, et al. Atmospheric 14CO: A tracer of OH concentration and mixing rates[J].Journal of Geophysical Research,2000, 105:15 147-15 166.
[36] Krol M C, Meirink J F, Bergamaschi P, et al. What can 14CO measurements tell us about OH[J].Atmospheric Chemistry and Physics,2008, 8: 5 033-5 044.
[37] Simmonds P G, O′Doherty S, Huang J, et al. Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1,1-difluorethane using automated in-situ gas chromatography-mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997[J].Journal of Geophysical Research,1998, 103: 16 029-16 037.
[38] Huang J, Prinn R. Critical evaluation of emissions for potential gases for OH estimation[J].Journal of Geophysical Research,2002, 107(D24), 4784, doi: 10.1029/2002JD002394.
[39] Staffelbach T A, Neftel A, Stauffer B, et al. Formaldehyde in polar ice cores: A possibility to characterize the atmospheric sink of methane in the past[J].Nature,1991, 349: 603-605.
[40] Sigg A, Neftel A. Evidence for a 50% increase in H2O2 over the past 200 years from a Greenland ice core[J].Nature,1991, 351: 557-559.
[41] Anklin M, Bales R C. Recent increases in H2O2 concentrations at Summit, Greenland[J].Journal of Geophysical Research,1997, 102: 19 099-19 104.
[42] Prinn R G, Simmonds P G, Rasmussen R A, et al. The atmospheric lifetime experiment, I: Introduction, instrumentation and overview[J].Journal of Geophysical Research,1983, 88:8 353-8 367.
[43] Prinn R G, Weiss R F, Fraser P J, et al. A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE[J].Journal of Geophysical Research,2000, 105: 17 751-17 792.
[44] Montzka S A, Spivakovsky C M, Butler J H, et al. New observational constraints on atmospheric hydroxyl on global and hemispheric scales[J].Science,2000,288:500-503.
[45] Krol M, Lelieveld J, Oram D E, et al. Continuing emissions of methyl chloroform from Europe[J].Nature,2003,421:131-135.
[46] Forster P, Ramaswamy V, Artaxo P,et al. Changes in atmospheric constituents and in radiative forcing[C]//Solomon S, Qin D, Manning M, et al, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York: Cambridge University Press, 2007: 129-234.
[47] Manning M R, Lowe D C, Moss R C, et al. Short-term variations in the oxidizing power of the atmosphere[J].Nature,2005, 436: 1 001-1 004.
[48] Wang C, Prinn R G. Impact of emissions, chemistry and climate on atmospheric carbon monoxide: 100-year predictions from a global chemistry model[J].Chemosphere: Global Change Science,1999, 1: 73-81.
[49] Prather M, Ehhalt D, Dentener F, et al. Atmospheric Chemistry and Greenhouse Gases[C]//Houghton J T, eds. Climate Change 2001: The Scientific Basis. United Kingdom and New York: Cambridge University Press, 2001: 239-288.
[50] Nakiéenovié N, Alcamo J, Davis G, et al. IPCC Special Report on Emissions Scenarios[M]. New York: Cambridge University Press, 2000.
[51] Pan Xunxi,Chen Shiming,Hou Huiqi. Measurement of atmospheric hydroxyl free radical (OH)[J].Shanghai Environmental Science,1999,18(2):59-61.[潘循皙,陈士明,侯惠奇. 大气环境中OH自由基测定[J].上海环境科学,1999, 18(2): 59-61.]
[52] Ren Xinrong, Otting M, Tian Honghai. Progress of the measurement of atmospheric OH using Laser-induced Fluorescence Technology[J].Shanghai Environmental Science,1999,18(12): 547-550.[任信荣, Otting M, 田洪海. 激光诱导荧光技术测量大气OH自由基的研究进展[J]. 上海环境科学, 1999, 18(12): 547-550.]
[53] Ren Xinrong, Shao Kesheng, Tang Xiaoyan. Establishment of OH radical measurement using laser induced fluorescence technique[J].Chinese Journal of Spectroscopy Laboratory,2000,17(2):125-128.[任信荣, 邵可声, 唐孝炎.激光诱导荧光技术测量OH自由基的建立和研究[J]. 光谱实验室, 2000, 17(2): 125-128.]
[54] Nie Jinsong, Zhang Weijun, Yang Yong, et al. The measurement of hydroxyl radicals by laser spectroscopy[J].Physics,2002, 31(1): 31-35.[聂劲松,张为俊,杨勇,等.激光光谱学方法测量大气中OH 自由基[J].物理, 2002, 31(1): 31-35.]
[55] Ren Xinrong, Wang Huixiang, Shao Kesheng, et al. Preliminary study on HOx photochemical process in urban atmosphere of Guangzhou city[J].Environment Science,2004, 25(4):28-31.[任信荣,王会祥,邵可声,等.广州城市大气HOx化学过程初步研究[J].环境科学, 2004, 25(4): 28-31.]
[56] Ren Xinrong, Wang Huixiang, Shao Kesheng, et al. Determination and characteristics of OH radical in urban atmospheric in Beijing[J].Environment Science,2002, 23(4):24-27.[任信荣, 王会祥, 邵可声,等.北京市大气OH自由基测量结果及其特征[J]. 环境科学, 2002, 23(4): 24-27.]
[57] Shao Min, Ren Xinrong, Wang Huixiang, et al. Quantitative relationship between production and removal of OH and HO2 radicals in urban atmosphere[J].Chinese Science Bulletin,2004, 49 (21): 2 253-2 258.[邵敏, 任信荣, 王会祥,等.城市大气中OH和HO2自由基生成和消除的定量关系[J]. 科学通报,2004, 49(17):1 716-1 721.]
[58] Fang Y, Zhao C, Li C. Analysis of the distribution of carbon monoxide from MOPITT over East Asia in 2002[J].Chinese Journal of Atmospheric Science,2005: 29(4),407-416.
[59] Geng F, Zhao C, Tang X, et al. Analysis of ozone and VOCs measured in Shanghai: A case study[J]. Atmospheric Environment,2006,41:989-1 001.
[60] Zhao C, Tie X, Lin Y. A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China[J].Geophysical Research Letters,2006, 33, L11814, doi: 10.1029/2006GL025959.
[61] Xu Xiaobin, Lin Weili, Wang Tao, et al. Long-term trend of tropospheric ozone over the Yangtze delta region of China[J].Advances in Climate Change Research,2006, 2(5): 211-217.[徐晓斌, 林伟立, 王韬,等.长江三角洲地区对流层臭氧的变化趋势[J].气候变化研究进展, 2006, 2(5): 211-217.]
[62] Peng L, Zhao C, Lin Y, et al. Analysis of carbon monoxide budget in North China[J].Chemosphere,2007, 66: 1 383-1 389.
[63] Lin Y, Zhao C, Peng L, et al. A new method to calculate monthly CO emissions using MOPITT satellite data[J].Chinese Science Bulletin,2007, 52(18): 2 552-2 558.
[64] Olivier J G J, Bouwman A F, van der Maas C W M, et al. Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on a 1°×1°  grid[R]. RIVM report. 771060 002/TNO-MEP report. R96/119. Natlional Institute of Public Health and Environment Bilthoven, Netherlands, 1996.
[65] Olivier J G J, Van Aardenne J A, Dentener F, et al. Recent trends in global greenhouse gas emissions: Regional trends and spatial distribution of key sources[M]//Anstel van A, ed. Non-CO2 Greenhouse Gases (NCGG-4). Millpress, Rotterdam, 2005: 325-330.
[66] Van Aardenne J A, Dentener F D, Olivier J G J, et al. The EDGAR 3.2 Fast Track 2000 dataset (32FT2000)[DB/OL].http://www.mnp.nl/edgar/model/v32ft2000 edgar/docv32ft2000/Description_of_ EDGAR_32FT2000(v8)_ tcm32-22222.pdf,2006.

[1] 刘许柯,付云翀,周卫健,张丽,赵国庆. 宇宙成因核素 7Be10Be示踪大气垂直传输交换研究进展[J]. 地球科学进展, 2020, 35(10): 1016-1028.
[2] 刘玮, 田文寿, 舒建川, 张健恺, 胡定珠. 热带平流层准两年振荡对热带对流层顶和深对流活动的影响[J]. 地球科学进展, 2015, 30(6): 724-736.
[3] 郭凤霞,鞠晓雨,陈聪. 估算闪电产生氮氧化物量的研究回顾与进展[J]. 地球科学进展, 2013, 28(3): 305-317.
[4] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[5] 胡宁,张朝林,仲跻芹,李玉焕. 大气对流层平流层交换(STE)研究进展[J]. 地球科学进展, 2011, 26(4): 375-385.
[6] 卞建春. 上对流层/下平流层大气垂直结构研究进展[J]. 地球科学进展, 2009, 24(3): 262-271.
[7] 刘毅,刘传熙,陆春晖. 平流层爆发性增温中平流层环流及化学成分变化过程研究[J]. 地球科学进展, 2009, 24(3): 297-307.
[8] 胡永云. 关于平流层异常影响对流层天气系统的研究进展[J]. 地球科学进展, 2006, 21(7): 713-720.
[9] 王炜罡;姚立;葛茂发;孙政;王殿勋;徐永福;高会旺. 对流层活性卤素化学:充满机遇和挑战的研究领域[J]. 地球科学进展, 2005, 20(11): 1199-1209.
[10] 黄毅;毛节泰;王美华. 用GMS-5对东亚地区对流层高层水汽的研究[J]. 地球科学进展, 2004, 19(5): 754-760.
[11] 杨健,吕达仁. 平流层—对流层交换研究进展[J]. 地球科学进展, 2003, 18(3): 380-385.
[12] 王体健,孙照渤. 臭氧变化及其气候效应的研究进展[J]. 地球科学进展, 1999, 14(1): 37-43.
阅读次数
全文


摘要