地球科学进展 ›› 2009, Vol. 24 ›› Issue (12): 1331 -1338. doi: 10.11867/j.issn.1001-8166.2009.12.1331

所属专题: IODP研究

IODP研究 上一篇    下一篇

地球深部与表层的相互作用
汪品先   
  1. 同济大学海洋地质国家重点实验室,上海200092
  • 收稿日期:2009-12-16 修回日期:2009-12-17 出版日期:2009-12-10
  • 通讯作者: 汪品先(1936-),男,江苏苏州人,教授,中国科学院院士,主要从事古海洋学及古环境研究. E-mail:pxwang@online.sh.cn
  • 基金资助:

    国家重点基础研究发展计划项目“大洋碳循环与气候演变的热带驱动”(编号:2007CB815900);国家高技术研究发展计划重点项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Interactions between Earth′s Deep and Surface

WANG Pinxian   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092,China
  • Received:2009-12-16 Revised:2009-12-17 Online:2009-12-10 Published:2009-12-17

板块理论和全球变化是20世纪地球科学中的2大突破性进展。进入21世纪,地球系统科学进入将这两方面结合起来,探索地球深部和表层系统的相互作用,即“固体地球动力学与行星循环(planetary cycle)”的新阶段。根据最近国际综合大洋钻探计划关于2013年后学术新方向的讨论,从俯冲带加工厂、大洋中脊与巨型火成岩省3个方面进行介绍,提出我国打破传统的学科界限、迎接新方向的建议。

The Plate Tectonics and Global Changes were two major breakthroughs in Earth science over the 20th century. A new focus of Earth science in the 21st century will be the interactions between the Earth′s deep and surface systems, i.e. “solid Earth dynamics and planetary cycle”. The present paper briefly discusses the new research frontiers on the basis of the IODP meeting on its scientific targets beyond 2013, including three parts: Subduction factory, mid-ocean ridge, and large igneous province. The paper ends with a suggestion that China has to develop cross-disciplinary studies to meet the new targets in Earth science.

中图分类号: 

[1]Langmuir C H, Forsyth D W. Mantle melting beneath mid-ocean ridges[J].Oceanograhy,2007,20(1):78-89.
[2]Tatsumi Y. The subduction factory: How it operates in the evolving Earth[J].GSA Today,2005,15(7):4-10. 
[3]NSF. MARGINS Science Plans[R]. New York:Lamont, 2004. 
[4]Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[C]Eiler J, ed. Inside the Subduction Factory. Geophysical Monograph Series,2003,138:175-222.
[5]Plank T, Kelly K A, Murray R W,et al. Chemical composition of sediments subducting at the Izu-Bonin trench[J]. Geochemistry, Geophysics, Geosystems,2007, 8, Q04I16, doi:10.1029/2006 GC001444.
[6]Hacker B R. H2O subduction beyond arcs[J].Geochemistry, Geophysics, Geosystems,2008, 9 (3),Q03001, doi:10.1029/2007GC001707.
[7]Wallmann K. The geological water cycle and the volution of marine δ18O values[J].Geochimica et Cosmochimica Acta,2001, 65:2 469-2 485.
[8]Ludden J. Subduction fluxes through geologic time[J].Applied Geochemistry,2009,24(6):1 052-1 057.
[9]Kerrick D. Serpentinite seduction[J].Science,2002, 298:1 344-1 345.
[10]Dobson D P, Meredith P G, Boon S A. Simulation of subduction zone seismicity by dehydration of serpentine[J].Science,2002, 298: 1 407-1 410.
[11]Charlou J L, Fouquet Y, Bougault H, et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta,1998, 62:2 323-2 333.
[12]Herzig P M, Hannington M D. Input from the deep: Hot vents and cold seeps[C]Schulz H D, Zabel M, eds. Marine Geochemistry (2nd ed). Berlin: Springer, 2006:457-479.
[13]Dickson J A D. Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans[J].Journal of Sedimentary Research,2004, 74: 355-365.
[14]Zierenberg R A,Miller D J. Overview of Ocean Drilling Program Leg 169: Sedimented Ridges II[C]Zierenberg R A, Fouquet Y, Miller D J, eds. Proceeding of ODP, Science Results, 2000,169:1-39.
[15]InterRidge. Melting, Magma, Fluids and Life: Challenges for the Next Generation of Scientific Ocean Drilling into the Oceanic Lithosphere[R]. Workshop Report, NOC:Southampton,27-29 July,2009.
[16]Larsen H C, Cannat M, Ceuleneer G, et al. Oceanic Crustal Structure and Formation. IODP and ODP Achievements November 2002—December 2005[R]. IODP-Mi, Sapporo, 2009:1-65.
[17]Wilson D S, Teagle  D A H, Alt J A, et al. Drilling to gabbro in intact ocean crust[J].Science,2006, 312: 1 016-1 020.
[18]Snow J E, Edmonds H N. Ultraslow-spreading ridges rapid Paradigm changes[J].Oceanography,2007, 20(1): 90-101.
[19]Teagle D, Abe N, Bach W, et al. The Ocean Lithosphere: A Fundamental Component of the Earth System[R]. InterRidge Workshop Report, NOC: Southampton, 27-29 July,2009.
[20]Wignall P B. Large igneous provinces and mass extinctions[J].Earth-Science Reviews,2001, 53: 1-33.
[21]Coffin M F, Duncan R A, Eldholm O, et al. Large igneous provinces and scientific ocean drilling: Status quo and a look ahead[J].Oceanography,2006,19:150-160.
[22]Campbell I H. Testing the plume theory[J].Chemical Geology,2007, 241: 153-176.
[23]Campbell I H. Large Igneous provinces and the mantle plume hypothesis[J].Elements,2005,1: 265-269.
[24]Bryan S E, Ernst R E. Revised definition of Large Igneous Provinces (LIPs)[J].Earth-Science Reviews,2008,86:175-202.
[25]Ernst R E, Buchan K L, Campbell I H. Frontiers in Large Igneous Province research[J].Lithos, 2005, 79: 271-297.
[26]Prokoph A, Ernst R E, Buchan K L. Time-series analysis of large igneous provinces: 3 500 Ma to present[J].Journal of Geology,2004,112:1-22.
[27]Neal C R, Coffin M F, Arndt N T, et al. Investigating large igneous province formation and associated paleoenvironmental events: A white paper for scientific drilling[J].Scientific Drilling,2008, 6: 4-18.
[28]Thordarson T, Self S. Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment[J].Journal of Geophysical Research,2003, 108(D1), 4011, doi:10.1029/2001JD002042.
[29]Self S, Blake S, Sharma K, et al. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release[J].Science,2008, 319: 1 654-1 657.
[30]Svensen H, Planke S, Malthe-S renssen A,et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming[J].Nature,2004, 429:542-545.
[31]Kuroda J, Ogawa N O, Tanimizu M, et al. Massive volcanism as a causal mechanism for a cretaceous oceanic anoxic event[J].Earth and Planetary Science Letters,2007, 256: 211-223.
[32]Wood B J. Carbon in the core[J].Earth and Planetary Science Letters,1993,117:593-607.
[33]Nakajima Y, Takahashi E, Suzuki T, et al. “Carbon in the core” revisited[J].Physics of the Earth and Planetary Interiors,2009, 174: 202-211.

[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[5] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[6] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[7] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[8] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[9] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[10] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[11] 宋长青,吴金水,陆雅海,沈其荣,贺纪正,黄巧云,贾仲君,冷疏影,朱永官. 中国土壤微生物学研究十年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.
[12] 曾庆存,林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6.
[13] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[14] 张志强,王雪梅. 国际全球变化研究发展态势文献计量评价[J]. 地球科学进展, 2007, 22(7): 760-765.
[15] 葛全胜,王芳,陈泮勤,田砚宇,程邦波. 全球变化研究进展和趋势[J]. 地球科学进展, 2007, 22(4): 417-427.
阅读次数
全文


摘要