地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 305 -311. doi: 10.11867/j.issn.1001-8166.2003.02.0305

研究论文 上一篇    下一篇

地球物理测井在天然气水合物勘探中的应用
高兴军 1,于兴河 1,李胜利 1,段鸿彦 2   
  1. 1.中国地质大学,北京 100083;2.西安石油勘探仪器总厂科技信息部,西安 710065
  • 收稿日期:2002-05-30 修回日期:2002-09-02 出版日期:2003-04-10
  • 通讯作者: 高兴军 E-mail:gaoxingjun@yahoo.com

APPLICATON OF GEOPHYSICAL WELL LOGGING TECHNOLOGY IN EXPLORATION OF GAS HYDRATE

Gao Xingjun 1,Yu Xinghe 1,Li Shengli 1,Duan Hongyan 2   

  1. 1.China University of Geosciences,Beijing 100083, China;2.Xi'an Petroleum Exploration Instrument Complex , Xi'an 710065,China
  • Received:2002-05-30 Revised:2002-09-02 Online:2003-04-10 Published:2003-04-01

天然气水合物是一种潜在的巨大能源。美国、日本、俄罗斯等发达国家在该领域已经进行了大量的研究工作,试图从各个角度去探测天然气水合物的存在并评价其蕴藏量。地球物理测井在天然气水合物探测与储量评价领域发挥了重要作用并且随着以勘探天然气水合物为目的的钻井的增多,日益受到重视。基于国内在该领域研究较少的现状,综述了国外地球物理测井技术在天然气水合物勘探中的应用,详细介绍了常规测井方法定性识别和定量评价天然气水合物储层的孔隙度、饱和度方法和技术,基于含天然气水合物储层的碳氧比能谱测井解释模型以及成像测井在含天然气水合物井段的测井响应。并在此基础上分析了我国在该领域的研究思路。

    Gas hydrate is a potential huge energy. The developed countries, such as United State, Japan and Russia, has done lots of researches in this area to detect the existence of gas hydrate and evaluate the reserves of it. Geophisical well logging has played a important role in the detection and evaluation of gas hydrate and along with the increase of wells drilling for explore the gas hydrate, more and more stress has been laid on well logging. Based on the present situation of poor research in this field in our country, this paper summarizes the application of geophysical well logging technology in the exploration of gas hydrate. 
    Firstly, the techniques of qualitative identification and quantitative evaluation of porosity and saturation in the gas hydrate bearing reservoir by conventional well logging data are discussed detailedly. For the qualitative identification, on the log in a gas hydrate zone ,there is a relatively higher electrical-resistivity deflection than that in a water saturated zone, a relatively lower SP deflection in gas hydrate bearing zone than that in free gas zone. And the caliper log in gas hydrate zone shows a characteristic with oversized borehole for the reason of gas-hydrate decomposition. There is a decrease in acoustic transittime in comparision to that in the water or free gas bearing horizon. In the neutron porosity and density log, they shows a slight increase and decrease respectively. For the quantitative evaluation, the porosity in the gas hydrate bearing reservoir can be determined from core analysis, density log, neutron porosity log and resistivity log, but the porosity from core ananlysis and resistivity log is more accurate than that from other two methods for the bad borehole condition. The saturation of gas hydrate can be calculated using standard Archie equation and a quicklook Archie analysis method.
    Secondly, carbon/oxygen spectral logging is a good method to quantitatively evaluate gas hydrate saturation. Two interpretation models of carbon/oxygen spectral logging for the gas hydrate bearing reservoir are presented. The first one is gas hydrate carbon/oxygen reservoir model,from which the ratio of between different elements and then the gas hydrate saturation can be derived.The second one is the complex carbon/oxygen reservoir model,in which the effects of borehole fluid and carbon in shale are considered.
    Thirdly,image logging responses at the gas hydrate bearing interval are introduced.During leg 164 of the Ocean Drilling Program, The FMS were used and produced a high resolution resistivity image, from which the existence of gas hydrate was proved. In addition, the FMI image was achieved in the Mackenzie delta of Canada ,from which the occurrence of gas hydrate also was inferred.
    Based on above summarization, the research strategy in this area for our country are presented.In view of the present situation, our country should cultivate young scholars in this field, and fund for the research in this area. In the aspect of technology, our country should enhance the research on the theory and experiment of every well logging responses, especially about calibration of bad borehole condition.

中图分类号: 

[1] Ma Zaitian,Song Haibin,Sun Jianguo. Geophysical prospecting high technologies of marine gashydrate[J]. Advances in Geophysics,2000,15(3):1-6.[马在田,宋海斌,孙建国.海洋天然气水合物的地球物理探测高新技术[J].地球物理进展,2000,15(3):1-6.]

[2] Collett T S. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations(saturations) and gas volumes on the Blake ridge with electrical resistivity log data[A]. In:Proceedings of the Ocean Drilling Program,Scientific Results[C].2000.Vol 164.

[3] Collett T S. Natural gas hydrates of the Prudhoe Bay-Kuparuk river area, North Slope, Alaska[J]. AAPG Bulletin,1993,77:793-812.

[4] Shipboard Scientific Party. Site 570. In: von Huene R,Aubouin J,et al. Initial Report.DSDP 84[R]. Washington:US Government Printing Office,1985.283-336.

[5] Shipboard Scientific Party. Site 892. In: Westbrook G K, Carson B, Musgrave R J, et al. Proceeding ODP Initiatial Reports,146(Pt.1):College Station,TX(Ocean Drilling Program),1994.301-378.

[6] Hyndman R D,Yuan T,Moran K. The concentration of deep sea gas hydrate from downhole electrical resistivity logs and laboratory data[J]. Earth and Planetary Sciencce Letters,1999,172:167-177.

[7] Song Haibin,Geng Jianhua,WANG How-King,et al. A preliminary study of gas hydrates in Dongsha north of south China sea[J].Chinese Journal of Geophysics,2001,44(5):687-695.[宋海斌,耿建华,WANG How-King,.南海北部东沙海域天然气水合物的初步研究[J].地球物理学报,2001,44(5):687-695.]

[8] Serra O. Fundamentals of Well-log Interpretation (Vol.1):The Acquisition of Logging Data:Developments in Petroleum Science,15A[C]. Amsterdam:Elservier,1984.

[9] Collett T S. Formation evaluation of gas hydrate-bearing marine sediments on the Blake ridge with downhole geochemical log measurements[A].In:Proceedings of the Ocean Drilling Program,Scientific Results[C]. 2000.Vol 164.

[10] Collett T S.A review of well-log analysis techniques used to assess gas-hydrate-bearing reservoirs[A]. In: Natural Gas Hydrates:Occurrence,Distribution,and Detection Geophysical Monograph 124[C].American Geophysical Union, 2001.189-210.

[1] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[4] 杨福强,陈科贵,黄长兵,陈愿愿,李进,马小林. PSO-LIBSVM在钾盐矿层识别中的应用研究[J]. 地球科学进展, 2019, 34(7): 757-764.
[5] 陈科贵, 李进, 黄长兵, 陈愿愿, 王刚, 刘阳. BP神经网络在富钾卤水中的应用研究[J]. 地球科学进展, 2018, 33(6): 614-622.
[6] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[7] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[8] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[9] 陈科贵, 吴刘磊, 陈愿愿, 王刚. 基于支持向量机的川中杂卤石分类识别研究[J]. 地球科学进展, 2016, 31(10): 1041-1046.
[10] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[11] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
[12] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[13] 钟广法,游倩. 高分辨率FMS成像测井资料在科学大洋钻探中的应用[J]. 地球科学进展, 2012, 27(3): 347-358.
[14] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[15] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
阅读次数
全文


摘要