地球科学进展 ›› 2003, Vol. 18 ›› Issue (1): 100 -108. doi: 10.11867/j.issn.1001-8166.2003.01.0100

研究论文 上一篇    下一篇

海洋环境沉积物输运研究进展
蒋东辉 1,2,高抒 2   
  1. 1.中国科学院海洋研究所,山东 青岛 266071;2.南京大学海岸与海岛开发教育部重点实验室,江苏 南京 210093
  • 收稿日期:2001-05-28 修回日期:2002-09-10 出版日期:2003-02-10
  • 通讯作者: 蒋东辉 E-mail:dhjiang@ms.qdio.ac.cn
  • 基金资助:

    国家自然科学资金项目“北黄海全新世沉积动力学研究”(编号:49876018)资助.

RECENT PROGRESS IN SEDIMENT TRANSPORT RESEARCH FOR MARINE ENVIRONMENTS

Jiang Donghui 1,2, Gao Shu 2   

  1. 1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071,China;2.Ministry of Education Key Laboratory for Coast and Island Development,Nanjing University, Nanjing 210093 ,China
  • Received:2001-05-28 Revised:2002-09-10 Online:2003-02-10 Published:2003-02-01

海洋环境中沉积物的输运涉及复杂的过程和机制。20世纪后半叶发展起来的悬沙输运数学模型已经成为海洋沉积动力学的一个有力的研究工具。悬沙输运数学模型的有效运行需要正确的数值解法和模型中所含参数的确定,包括悬沙沉降速度、扩散系数、底床糙度和切应力,以及底边界上的沉降-再悬浮通量。由于复杂的水动力条件、屏蔽效应以及海底生物扰动等因素的作用,海洋环境推移质输运的经验、半经验公式具有一定的局限性。因此,充分考虑以上各种因素是正确预测海洋环境中推移质输运的关键。海洋环境沉积物输运理论的进一步发展需要着重进行各种过程和机制的研究,而这项工作依赖于高精度、高分辨率现场观测仪器的发展和更先进的颗粒态物质运动理论的建立。

Sediment transport in marine environments is associated with complex process. The development of mathematical modeling for suspended sediment transport in the late 20th century has provided a powerful tool for marine sediment dynamics. Effective running of the models requires appropriate algorithm and correct input parameters including the settling velocity of suspended matter, diffusion/dispersion coefficients for sediment, seabed roughness length, near-bed shear stress and the vertical (settling/resuspension) fluxes at the seabed boundary. For bed-load transport, empirical and semi-empirical formulae have been adopted, but these need further improvement, taking into account the factors of hydrodynamic setting, bed armoring, intensive activities of benthos, etc. Investigations into the physical processes and mechanisms for transport in the marine environment are needed to determine those parameters in suspended sediment transport models and to establish a more advanced theory for the physics of granular materials, which will be benefited by advancement in measurement technologies using instruments with high accuracy and resolution.

中图分类号: 

[1] Matthews J B, Mungall J C H. A numerical tidal model and its application to Cook Inlet, Alaska [J]. Journal of Marine Research, 1972, 30(1): 27-38.

[2] Kerssens P M J, Prins A D, van RiJn L C. Model for suspended sediment transport [J]. Journal of the Hydraulics Division, 1979, 105(HY5): 461-476.

[3] Jewell P W, Stallard R F, Mellor G L. Numerical studies of bottom shear stress and sediment distribution on the Amazon continental shelf [J]. Journal of Sedimentary Petrology, 1993, 63(6): 734-745.

[4] Xin WenJie. Numerical model of 2D estuarine suspended sediment motion under the interaction of tidal flow and waves [J]. The Ocean Engineering, 1997, 15(1): 30-47. [辛文杰. 潮流、浪综合作用下河口二维悬沙数学模型 [J]. 海洋工程, 1997, 15(1): 30-47.]

[5] Kivman G A. Weak constraint data assimilation for tides in the Arctic Ocean [J]. Progress in Oceanography, 1997, 40:179-196.

[6] Spitz Y H. Estimate of bottom and surface stress during a spring-neap tide cycle by dynamics assimilation of tide gauge observations in the Chesapeake Bay [J]. Journal of Geophysical Research, 1998, 103(C6): 12 761-12 782.

[7] Greiner Eric, Sabine Arnault. Comparing the result of a 4D-variational assimilation of satellite and in situ data with WOCE CITHER hydrographic measurements in the tropical Atlantic [J]. Progress in Oceanography, 2000, 47:1-68.

[8] Sherwood C R, Butman B, Cacchione D A, et al. Sediment transport events on the northern California continental shelf during the 1990-1991 STRESS experiment [J]. Continental Shelf Research, 1994,14: 1 063-1 099.

[9] Wiberg P L, Cacchione D A, Sternberg R W, et al. Linking sediment transport and stratigraphy on the continental shelf [J]. Oceanography, 1996, 9:153-157.

[10] Syvitski J P M, Murry J W. Particle interaction in fJord suspended sediment [J]. Marine Geology, 1981, 39: 215-242.

[11] Alldredge A L, Gotschalk C C. Direct observation of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates [J]. Deep-Sea Research, 1989, 36(2): 159-171.

[12] Fennessy M J, Dyer K R, Huntley D A. INSSEV: An instrument to measure the size and settling velocity of flocs in situ [J]. Marine Geology, 1994, 117: 107-117.

[13] Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport [J]. Marine Geology, 2000, 168: 89-114.

[14] Van Leussen W, Cornelisse J M. The role of large aggregregates in estuarine fine-grained sediment dynamics[A]. In: Mehta A J ed. Nearshore and Estuarine Cohesive Sediment Transport[C]. American Geophysical Union, Washing DC, 1993. 75-91.

[15] Ten Brinke W B M. Settling velocities of mud aggregates in the Oosterschelde tidal basin (the Netherlands), determined by a submersible video system [J]. Estuarine, Coastal Shelf Science, 1994, 39:549-564.

[16] Dyer K R, Cornelisse J, Deanaley M P, et al. A comparison of in situ techniques for estuarine floc settling velocity measurement [J]. Journal of Sea Research, 1996, 36(1/2): 15-29.

[17] Wilbert Lick, Hening Huang, Richard Jepsen. Flocculation of fine-grained sediments due to differential settling [J]. Journal of Geophysical Research, 1993, 82: 10 279-10 288.

[18] Gibbs R J. Estuarine flocs: Their size, settling velocity and density[J]. Journal of Geophysical Research,1985, 90: 3 249-3 251.

[19] Wells J T, Shanks A L. Observation and geologic significance of marine snow in a shallow-water, partially enclosed marine embayment [J]. Journal of Geophysical Research, 1987, 92: 13 185-13 190.

[20] Milligan T G. In situ particle (floc) size measurements with the Benthos 373 plankton silhouette camera [J]. Journal of Sea Research, 1996, 36: 93-100.

[21] Bale A J, Morris A W. In situ measurement of particle size in estuarine water [J]. Estuarine, Coastal and Shelf Science, 1987, 24: 253-263.

[22] Sternberg R W, Ogston R. A video system for in situ measurement of size and settling velocity of suspended particles [J]. Journal of Sea Research, 1996, 36: 127-130.

[23] MofJeld H O. Depth dependence of bottom stress and qudratic coefficient for baratropic pressure-driven currents [J]. Journal of Physical Oceanography, 1988, 18:1 658-1 669.

[24] Drake D E, Cacchione D A. Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California [J]. Continental Shelf Research, 1986, 6:415-429.

[25] Grant W D, Madsen O S. The continental-shelf bottom boundary layer [J]. Annual Review of Fluid Mechanics, 1986, 18: 265-305.

[26] Cheng R T, Gartner J W,Smith R E. Bottom boundary in south San Francisco bay, California [J]. Journal of Coastal Research, 1997, SI 25: 49-62.

[27] Cacchione D A, Drake D E. A new instrument system to investigate sediment dynamics on continental shelf [J]. Marine Geology, 1979, 30: 299-312.

[28] Smith J D, McLean S R. Spatially averaged flow over a wavy surface [J]. Journal of Geophysical Research, 1977, 82: 1 735-1 746.

[29] Partheniades E. Erosion and deposition of cohesive soils [J]. Journal of the Hydraulics Division, ASCE, 1965, 91(HY1): 105-139.

[30] Metha A J, Hayter E J, Parker W R, et al. Cohesive sediment transport I: Process description [J]. Journal of Hydraulic Engineering, 1989, 115: 1 076-1 093.

[31] Lau Y L, Krishnappan B G. Does reentrainment occur during cohesive sediment settling [J]. Journal of Hydraulic Engineering, 1994, 120: 236-244.

[32] Misri R L, Garde R J, Ranga RaJu K G. Bed load transport of coarse nonuniform sediment [J]. Journal of Hydraulic Engineering American Society Civil Engineering, 1984, 110: 312-328.

[33] Wiberg P L, Smith J D. Model for calculating bed load transport of sediment [J]. Journal of Hydraulic Engineering, 1989, 115: 101-123.

[34] Hsu S M, Holly F M. Conceptual bed-load transport model and verification for sediment mixture [J]. Journal of Hydraulic Engineering, 1992, 118(8): 1 135-1 152.

[35] Madsen O S, Grant W D. Sediment Transport in the Coastal Environment[R]. Report No. 209. Massachusetts, Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute Technology, 1976.

[36] Vincent C E, Young R A, Swift D J P. Bedload transport under waves and currents [J]. Marine Geology, 1981, 39(3/4): 71-80.

[37] Hardisty J. An assessment and calibration of formulation for Bagnold’s bedload equation [J]. Journal of Sedimentary Petrology, 1983, 53: 1 007-1 010.

[38] Wang Yaping, Gao Shu. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and particle size [J]. Journal of Sedimentary Research, 2001, 71: 118-121.

[39] Grochowski N T L, Collins M B, Boxall S B,et al. Sediment transport predictions for the English Channel, using numerical models [J]. Journal of the Geological Society, London, 1993, 150: 683-695.

[40] Cheng R T, Ling C, Gartner J W, et al. Estimates of bottom roughness length and bottom shear stress in south San Francisco Bay, California [J]. Journal of Geophysical Research, 1999, 104: 7 715-7 728.

[41] Alvarez O, Izquierdo A, TeJedor B, et al. The influence of sediment load on tidal dynamics, a case study: Cadiz Bay [J]. Estuarine, Coastal and Shelf Science, 1999, 48: 439-450.

[42] Green M O, McCave I N. Seabed drag coefficient under tidal currents in the eastern Irish Sea [J]. Journal of Geophysical Research, 1995, 100: 16 057-16 069.

[43] Dyer K R. Velocity profiles over a rippled bed and the threshold of movement of sand [J]. Estuarine Coastal Marine Science, 1980, 10:181-199.

[44] Grant W D, Madsen O S. Movable bed roughness in unsteady oscillatory flow [J]. Journal of Geophysical Research, 1982, 87: 469-481.

[45] Rankin K L, Hires R I. Laboratory measurement of bottom shear stress on a movable bed [J]. Journal of Geophysical Research, 2000, 105(C7): 17 011-17 019.

[46] McEman I K, Jefcoate B J, Willetts B B. The grain-fluid interaction as a self-stabilizing mechanism in fluvial bed load transport [J]. Sedimentology, 1999, 46:407-416.

[47] Lou J, Schwab D J. A model of sediment resuspension and transport dynamics in southern Lake Michigan [J]. Journal of Geophysical Research, 2000, 105(C3): 6 591-6 610.

[48] Miller M C, McCave I N, Komar P D. Threshold of sediment motion under unidirectional currents [J]. Sedimentology, 1977, 24: 507-527.

[49] Hammond F D C, Heathershaw A D, Langhorne D N. A comparison between Shields’ threshold criterion and the movement of loosely packed gravel in a tide channel [J]. Sedimentology, 1984, 31:51-62.

[50] Wiberg P L, Smith J D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments [J]. Water Resources Research, 1987, 23: 1 471-1 480.

[51] Wilcock P R. Experimental investigation of the effect of mixture properties on transport dynamics[A]. In: Billi P, Hey R D, Thorne C R, et al, eds. Dynamics of Gravel-bed Rivers[C].Indianapolis: John Wiley & Sons,1992.109-139.

[52] Wallbridge S, Voulgaris G, Tomlinsons B N, et al. Initial motion and pivoting characteristics of sand particles in uniform and heterogeneous beds: Experiments and modeling [J]. Sedimentology, 1999, 46: 17-32.

[53] Reed C W, Niedoroda, Swift D J P. Modeling sediment entraiment and transport processes limited by bed armoring [J]. Marine Geology, 1999, 154:143-154.

[54] Harris C K, Wiberg P L. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site [J]. Continental Shelf Research, 1997, 17(11):1 389-1 418.

[55] Yong Z, Swift D J P, SheJun F, et al. Two-dimension numerical modeling of storm deposition on the northern California shelf [J]. Marine Geology, 1999, 154:155-167.

[56] Lou J, Ridd P V. Modelling of suspended sediment transport in coastal areas under waves and currents[J]. Estuarine, Coastal and Shelf Science, 1997, 45:1-16.

[57] Mosley M P, Tindale D S. Sediment veriability and bed material sampling in gravel-bed rivers[J]. Earth Surface Process and Landforms, 1985,10: 465-482.

[58] Garcia C, Laronne J B, Sala M. Variable source areas of bedload in a gravel-bed stream [J]. Journal of Sedimentary Research, 1999, 69: 27-31.

[59] Church M. Sediment sorting in gravel-bed rivers [J]. Journal of Sedimentary Research, 1999, 69(1): 20.

[60] Wilcock P R, Barta A F, Shea C C, et al. Observations of flow and sediment entraiment on a large gravel-bed river [J]. Water Resources Research, 1996, 32:2 897-2 909.

[61] Eckman J E, Nowell A R M, Jumars P A. Sediment destabilization by animal tubes [J]. Journal of Marine Research, 1981, 2: 361-374.

[62] Jumars P A, Nowell R M. Effects of benthos on sediment transport: Difficulties with functional grouping [J]. Continental Shelf Research, 1984, 3(2):115-130.

[63] Luckenbach M W, Huggett D V, Zobrist E C. Sediment transport, biotic modification and selection of grain size in a surface deposition-feeders [J]. Estuaries, 1988, 11( 2): 134-139.

[64] Meadows P S, Tait J. Modification of sediment permeability and shear strength by two burrowing invertebrates [J]. Marine Biology, 1989, 101: 75-82.

[65] Wright L D, Schaffner L C, Maa J P. Biological mediation of bottom boundary layer processes and sediment suspension in the lower Chesapeake Bay [J]. Marine Geology, 1997, 141: 27-50.

[66] Rowden A A, Jones M B, Morris A W. The role of Callianassa subterranean (Montagu) (THALASSINIDEA) in sediment resuspension in the North Sea [J]. Continental Shelf Research, 1998, 18: 1 365-1 380.

[67] Howarth M J. The effect of stratification on tidal current profiles[J]. Continental Shelf Researc, 1998, 18: 1 235-1 254.

[68] Rowden A A, Jago C F, Jones S E. Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment, North Sea [J]. Continental Shelf Research, 1998, 18: 1 347-1 363.

[69] Jones S E, Jago C F. In situ assessment of modification of sediment properties by burrowing invertebrates [J]. Marine Biology, 1993, 115:133-142.

[70] Botto F, Iribarne O. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments [J]. Esturine, Coastal and Shelf Science, 2000, 51: 141-151.

[1] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[2] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[3] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[4] 高抒. 潮汐汊道形态动力过程研究综述[J]. 地球科学进展, 2008, 23(12): 1237-1248.
[5] 宋新山,邓伟,夏永云. 潜流构建湿地氮素转化运移的理论模型研究[J]. 地球科学进展, 2007, 22(10): 1041-1047.
[6] 马蔚纯,陈立民,李建忠,高效江,林卫青. 水环境非点源污染数学模型研究进展[J]. 地球科学进展, 2003, 18(3): 358-366.
[7] 任鲁川. 区域自然灾害风险分析研究进展[J]. 地球科学进展, 1999, 14(3): 242-246.
[8] 石特临,郭大庆. 地震学中非线性预测方法的初步研究[J]. 地球科学进展, 1995, 10(3): 273-277.
[9] 沈焕庭,肖成猷,孙介民. 河口最大浑浊带数学模拟研究的进展[J]. 地球科学进展, 1994, 9(5): 20-25.
阅读次数
全文


摘要