地球科学进展 ›› 2000, Vol. 15 ›› Issue (1): 90 -96. doi: 10.11867/j.issn.1001-8166.2000.01.0090

综述与评述 上一篇    下一篇

矿物—水界面的表面离子化和络合反应模式
魏俊峰,吴大清   
  1. 中国科学院广州地球化学研究所,广东 广州 510640
  • 收稿日期:1999-02-09 修回日期:1999-04-09 出版日期:2000-02-01
  • 通讯作者: 魏俊峰,男,1965年2月出生,博士生,主要从事矿物表面化学研究。
  • 基金资助:

    国家自然科学基金项目“污染沉积物—水界面作用的多样性及其矿物学机制研究”(编号:49773206)和广东省自然科学基金项目“矿物
    界面反应动力学及珠江沉积污染物可除性技术研究”(编号:960504)资助。

SURFACE IONIZATION AND SURFACE COMPLEXATION MODELS AT MINERAL/WATER INTERFACE

WEI Junfeng, WU Daqing   

  1. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
  • Received:1999-02-09 Revised:1999-04-09 Online:2000-02-01 Published:2000-02-01

表面络合模式已广泛应用于研究矿物表面吸附和溶解反应,尤其是(氢)氧化物和层状铝硅酸盐矿物。表面官能团是矿物参与表面络合反应的基本单元,(氢)氧化物矿物只具有表面羟基,而层状铝硅酸盐矿物除表面羟基外还具有离子交换位。矿物的表面电荷由永久结构电荷、配位表面电荷和离解表面电荷组成,各种零表面电荷状态可由不同的零电荷点来表征。恒电容模式、双层模式和三层模式是3种最常用的表面络合模式,它们在双电层结构、表面反应(质子化反应和络合反应)、表面电荷与质量平衡方程及应用范围上存在着一些差异。

 Surface complexation models (SCMs) have been widely used to study mineral surface adsorption and solution, especially for (hydr)oxide and phylloaluminosilicate minerals. Surface functional groups are basic units of surface complexation reactions of minerals. (Hydr)oxide minerals possess surface hydroxyl groups only and phylloaluminosilicate minerals have ion-bearing exchange sites in addition to surface hydroxyl groups. Surface charges on minerals consists of permanent structural charge,coordinative surface charge and dissociated surface charge. A variety of zero surface charge conditions could be presented with different types of points of zero charge. The constant capacitance model (CCM),the double layer model (DLM) and the triple layer model (TLM) are three most commonly used SCMs.Among them, some differences existed in their electrical double layer structures, surface reactions ( protolysis and surface complexation), surface charge and mass balance equations, and range of application.

中图分类号: 

〔1〕汤鸿霄,薛含斌,毛美洲,等译.水化学——天然水体化学平衡导论〔M〕.北京:科学出版社, 1987. 443~501.
〔2〕Davis J A, Kent D B. Surface complexation modeling in aqueous geochemistry〔A〕. In: Hochella M F, White A F,eds. Mineral-Water Interface Geochemistry: Reviews in Mineralogy, Vol 23〔C〕. Washington, D C: Miner Soc Am,1990. 177~259.
〔3〕吴大清,彭金莲,陈国玺.硫化物吸附金属离子的实验研究—I,类型〔J〕.地球化学, 1996, 25(2): 181~189.
〔4〕虞锁富.膨润土、高岭石对锌的吸附和解吸〔J〕.矿物学报,1989, 9(3): 276~279.
〔5〕Allen H E, Chen Y, Li Y,et al. Soil partition coefficients for Cd by column desorption and comparison to batch adsorption measurements〔J〕. Environ Sci Technol, 1995, 29(8): 1 887~1 891.
〔6〕冉勇,刘铮.稀土元素在土壤和氧化物表面的吸附和解吸研究〔J〕.环境科学学报, 1993, 13(3): 288~294.
〔7〕Hayes K F, Redden G, Ela W, et al. Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data〔J〕. J Colloid Interface Sci, 1991, 142(2):449~469.
〔8〕Sahai N, Sverjensky D A. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data〔J〕. Geochim Cosmochim Acta, 1997, 61(14):2 801~2 826.
〔9〕Gabaldon C, Marzal P, Ferrer J,et al. Single and competitive adsorption of Cd and Zn onto a granular activated carbon〔J〕.Wat Res, 1996, 30(12): 3 050~3 060.
〔10〕Katz L E, Hayes K F. Surface complexation modelingⅠ,Strategy for modeling monomer complex formation at moderate surface coverage〔J〕. J Colloid Interface Sci, 1995,170: 477~490.
〔11〕Katz L E, Hayes K F. Surface complexation modelingⅡ,Strategy for modeling polymer and precipitation reactions at high surface coverage〔J〕. J Colloid Interface Sci, 1995,170: 491~501.
〔12〕Van Cappellen P, Charlet L, Stumm W,et al. A surface complexation model of the carbonate mineral-aqueous solution interface〔J〕. Geochim Cosmochim Acta, 1993, 57:3 505~3 518.
〔13〕Bebie J, Schoonen M A A, Fuhrmann M,et al. Surface charge development on transition metal sulfides: An electrokinetic study〔J〕. Geochim Cosmochim Acta, 1998, 62(4): 633~642.
〔14〕Hiemstra T, Van Riemsdijk W H, Bolt G H. Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxides: A new approachⅠ, Model description and evaluation of intrinsic reaction constants〔J〕. J Colloid Interface Sci,1989, 133(1): 91~104.
〔15〕Hiemstra T, De Wit J C M, Van Riemsdijk W H. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approachⅡ, Application to various important (hydr)oxides〔J〕. J Colloid Interface Sci, 1989,133(1): 105~117.
〔16〕杨雅秀,张乃娴,苏昭冰,等著.中国粘土矿物〔M〕.北京:地质出版社, 1994. 16~17.
〔17〕Barron V, Torrent J. Surface hydroxyl configuration of various crystal faces of hematite and goethite〔J〕.J Colloid Interface Sci, 1996, 177: 407~410.
〔18〕Koretsky C M, Sverjensky D A, Sahai N. A model of surface site types on oxide and silicate minerals based on crystal chemistry: Implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics〔J〕. Amer J Sci, 1998, 298(5): 349~438.
〔19〕Hohl H, Stumm W. Interaction of Pb2+with hydrousγ-Al2O3〔J〕. J Colloid Interface Sci, 1976, 55(2): 281~288.
〔20〕Yates D E, Healy T M. The structure of the silica/electrolyte interface〔J〕. J Colloid Interface Sci,1976, 55(1): 9~19.
〔21〕Davydov V Y, Kiselev A V, Zhuravlev L T. Study of the surface and bulk hydroxyl groups of silica by infrared spectra and D2O-exchange〔J〕. Trans Faraday Soc, 1964,60:2 254.
〔22〕Sposito G. On points of zero charge〔J〕. Environ Sci Technol,1998, 32(19): 2 815~2 819.
〔23〕Wieland E, Stumm W. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25℃〔J〕. Geochim Cosmochim Acta, 1992, 56(9): 3 339~3 355.
〔24〕Sverjensky D A. Zero-point-of-charge prediction from crystal chemistry and solvation theory〔J〕. Geochim Cosmochim Acta, 1994, 58(14): 3 123~3 129.
〔25〕Sverjensky D A, Sahai N. Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water〔J〕. Geochim Cosmochim Acta, 1996, 60(20): 3 773~3 797.
〔26〕Davis J A, Coston J A, Kent D B,et al. Application of the surface complexation concept to complex mineral assemblages〔J〕. Environ Sci Technol, 1998, 32(19): 2 820~2 828.
〔27〕Benschoten J E, Young W Y, Matsumoto M R,et al. A nonelectrostatic surface complexation model for lead sorption on soils and mineral surfaces〔J〕. J Environ Qual, 1998, 27(1): 24~30.
〔28〕Charmas R, Piasecki W, Rudzinski W. Four layer complexation model for ion adsorption at electrolyte/oxide interface: Theoretical foundations〔J〕. Langmuir, 1995, 11(8): 3 199~3 210.
〔29〕Hiemstra T, Van Riemsdijk W H. A surface structural approach to ion adsorption: The charge distribution(CD) model〔J〕. J Colloid Interface Sci, 1996, 179: 488~508.
〔30〕文湘华,杜青,汤鸿霄.乐安江沉积物对重金属的吸附模式研究——表面络合模式在天然沉积物研究中的应用〔J〕.环境科学学报, 1996, 16(1): 13~22.
〔31〕Meima J A, Comans R N J. Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash〔J〕. Environ Sci Technol, 1998, 32(5):688~693.

[1] 邓友军,马毅杰,温淑瑶. 有机粘土化学研究进展与展望[J]. 地球科学进展, 2000, 15(2): 197-203.
阅读次数
全文


摘要