地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 279 -283. doi: 10.11867/j.issn.1001-8166.2001.02.0279

所属专题: 青藏高原研究——青藏科考虚拟专刊

全球变化研究 上一篇    下一篇

质量平衡法——定量恢复新生代青藏高原造山作用
向芳,王成善   
  1. 成都理工学院,四川 成都  610059
  • 收稿日期:2000-06-12 修回日期:2000-09-04 出版日期:2001-04-01
  • 通讯作者: 向芳(1974-),女,重庆万县人,博士,主要从事沉积地质学研究. E-mail:wcs@dinosaur.cdit.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“青藏高原形成演化及环境、资源效应”(编号:1998040800);国土资源部项目“GIS支持下的青藏高原隆升与沉积响应研究”(编号:9506016);教育部海洋地质实验室项目(编号:9905)联合资助.

MASS BALANCE:A QUANTITATIVE METHOD FOR OROGENY RECONSTRUCTING OF QINGHAI-TIBET PLATEAU

XIANG Fang, WANG Cheng-shan   

  1. Chengdu University of Technology,Chengdu610059,China
  • Received:2000-06-12 Revised:2000-09-04 Online:2001-04-01 Published:2001-04-01

青藏高原的形成演化及其对东亚地形、水文分布、季风起源、全球气候变化、海洋化学组分改变等的影响,一直是全球地质学家关注的热点。然而由于定量研究方法的缺乏,一些关键性的问题一直悬而未决。质量平衡法的提出为解决这一困境提供了新思路。阐述了质量平衡法的原理,并以Metivier等对西藏高原地区、东亚、印度支那和印度板块地区的研究为例,介绍了质量平衡法的应用,同时对存在的问题进行了较为详细的讨论,为进一步研究指明了重点。

The forming and evolution of Qinghai Tibet plateau is an important research field, which is concerned by geologists all over the world and has very great effect on topography, rive systems, monsoon in Asia and the changes of climate and oceanic chemical composition in the world. However, because of lacking quantitative researches, some of key problems haven’t been solved. The appearance of mass balance offers a new method to solve these problems. In this article, the principle of mass balance is introduced, then application is illustrated with examples of basins in Tibet plateau, East China, surrounding Indo China and the Indian Plate. Some problems of using the method are discussed in detail, which would be the main research points in the future.

中图分类号: 

[1]  Wang Pinxian. Deformation of Asia and global cooling: searching links between climate and tectonics[J].Quaternary sciences,1998,3:213-219.[汪品先.亚洲形变与全球变冷——探索气候与构造的关系[J].第四纪研究,1998,(3):213~219.]
[2]  Bird P. Initiation of intracontinental subduction in the Himalaya[J].J Geophys Res,1978,83:4 975~4 987.
[3]  Zhao W L, Morgan W J. Uplift of the Tibetan plateau[J].Tectonics,1985,4:359~369.
[4]  Jin Y, Nutt M, Zhu y. Evidence from gravity and topography data for folding of Tibet[J]. Nature,1994,371:669~674.
[5]  Burg J P,Davy P,Martinod J. Shortening of analogue models of the continental lithosphere: New hypothesis for the formation of the Tibetan plateau[J].Tectonics,1995,13:475~483.
[6]  England P C, McKenzie D. A thin viscous sheet model for continental deformation[J].Geophys J R Astron Soc, 1982,70:3 664~3 676.
[7]  England P C, Houseman G. Finite strain calculations of continental deformation,2, Comparison with the India-Asia collision zone[J].J Geophys Res,1986,91:3 664~3 676.
[8]  Tapponnier P C. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J].Earth Planet Sci Lett,1990,97:382~403.
[9]  Metivier F, Guademer Y, Tapponnier P,et al. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basin, China[J]. Tectonics, 1998,17:823~842.
[10]  Meyer B, Tapponnier P,Bourjot F,et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J].Geophys J Int,1998.135(1):1~47.
[11]  Burbank D W, Reynolds R G H. Sequential late Cenozoic structural disruption of the northern Himalayan foredeep[J].Nature,1984,311:114~118.
[12]  Metivier F, Guademer Y,Tapponnier P,et al. Mass accumulation rates in Asia during the Cenozoic[J]. Geophys J Int,1999, 137:280~318.
[13]  Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon[J]. Rev Geophys,1993,31:357~396.
[14]  Avouac J P, Burov E B. Erosion as a driving mechanism of intracontinental mountain growth[J]. J Geophys Res Lett,1993,20:895~898.
[15]  Metivier F, Gaudemer Y. Mass transfer between eastern Tien Shan and adjacent basins (central Asia): constraints on regional tectonics and topography[J]. Geophys J Int,1997,128:1~17.
[16]  Quade J, Cerling T, Bowman J. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan[J]. Nature,1989,342:163~166.
[17]  Prell W L, Murray D W, Clemens S C. Evolution and variability of the Indian Ocean summer monsoon: evidence from Scientific Drilling in the Indian Ocean[J]. Am Geophys Un Geophys Monogr, 1992,70:447~469.
[18]  Lu yanchou, Ding Guoyu. The Cenozoic tectonic evolution related to the Asia plaeomonsoon in China and adjacent region: a brief discussion[J]. Quaternary Sciences,1998,(3):205~209.[卢演俦,丁国瑜.与亚洲古季风有关的中国及邻区新生代构造演化的几个问题[J],第四纪研究,1998,(3):205~209.]
[19]  Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and Evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences.1998,(3):194~201.[刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J].第四纪研究,1998,(3):194~201.]
[20]  Wang Guozhi, Wang chengshan, Zeng Yunfu. Sedimentary evidence of the Western Yunnan plateau uplift since Miocene[J]. Bulletin of Mineralogy, Petrology and Geochemistry.1999,18(3):167~169.[王国芝,王成善,曾允孚.中新世以来滇西高原隆升的沉积学证据[J].矿物岩石地球化学通报,1999,18(3):167~169.]
[21]  Wang Chenshan, Liu Zhifei, Wang Guozhi,et al.Three dimension Paleotopographic reconstruction in Cenozoic Tibet plateau [J].Journal of Chengdu University of technology,2000,27(1):1~7.[王成善,刘志飞,王国芝,等.新生代青藏高原三维古地形再造[J].成都理工学院学报,2000,27(1):1~7.]
[22]  Dong Wengjie, Tang Maocang. Research on numerical model of uplift and plantation process in Tibet plateau[J]. Science in China(series D).1997,27(1):65~70.[董文杰,汤懋苍.青藏高原隆升和夷平过程的数值模型研究[J].中国科学(D),1997,27(1):65~70.]
[23]  Wang Pinxian. ODP and Qinghai/Xizang(Tibetan) plateau[J].Advance in Earth Sciences,1995,10(3):254~257.[汪品先.大洋钻探与青藏高原[J].地球科学进展,1995,10(3):254~257.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
阅读次数
全文


摘要