地球科学进展 ›› 2010, Vol. 25 ›› Issue (8): 866 -876. doi: 10.11867/j.issn.1001-8166.2010.08.0866

上一篇    下一篇

数字黑河的思考与实践4:流域观测系统
李新 1,程国栋 1,马明国 1,肖青 2,晋锐 1,冉有华 1,赵文智 1,冯起 1,陈仁升 1,胡泽勇 1,盖迎春 1   
  1. 1.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;
    2.中国科学院遥感应用研究所,北京 100101
  • 收稿日期:2010-06-20 修回日期:2010-07-02 出版日期:2010-08-10
  • 通讯作者: 李新 E-mail:lixin@lzb.ac.cn
  • 基金资助:

    国家杰出青年科学基金项目“流域尺度陆面数据同化系统研究”(编号:40925004);中国科学院西部行动计划(二期)项目“黑河流域遥感—地面观测同步试验与综合模拟平台建设”(编号:KZCX2-XB2-09);国家高技术研究发展计划(863计划)子课题“多频多谱段遥感数据生态环境参数综合反演技术”(编号:2009AA12Z1463)和“多源遥感数据同化通用软件系统研制”(编号:2009AA12Z130)资助.

Digital Heihe River Basin. 4: Watershed Observing System

Li Xin 1, Cheng Guodong 1, Ma Mingguo 1, Xiao Qing 2, Jin Rui 1, Ran Youhua 1, Zhao Wenzhi 1, Feng Qi 1, Chen Rensheng 1, Hu Zeyong 1,#br# Gai Yingchun 1#br#   

  1. 1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2010-06-20 Revised:2010-07-02 Online:2010-08-10 Published:2010-08-10

数字化的流域观测系统是数字流域的重要组成部分。①首先介绍了水循环卫星遥感和地面观测的最新进展,以及航空遥感在流域观测中的重要作用。②介绍了对于流域观测系统的构想。认为流域观测系统应兼顾陆面过程、水文、生态观测的不同空间尺度和时间尺度,监测与控制试验并重,地面与遥感配合,重视采样设计,重视新兴观测手段,与信息系统和模型高度集成,科学目标导向,模型需求驱动。③黑河流域观测系统由位于流域上中下游不同景观带的野外研究站、综合观测试验以及气象水文业务化观测网络组成,在流域内先后开展了HEIFE实验、金塔试验和黑河综合遥感联合试验。④介绍了对于流域观测系统的进一步构想:增强遥感观测能力是关键,集成遥感、地面观测和模型模拟才能更好地定量估计水循环,流域观测系统应和信息系统、综合模型等共同构成流域科学研究的信息基础设施,更好地为流域科学服务。

Novel technologies in remote sensing and ground observations have made it possible to capture the spatial and temporal variations of hydrological variables. In the next decades, their spatial and temporal resolution will increase significantly. This paper provides our thoughts on the watershed observing system in the Digital Heihe River Basin research initiative. First, the latest advances in observing the water cycle using satellite remote sensing, airborne remote sensing, and ground-based observation are reviewed. The next part of the paper presents our prospects on how to build a watershed observing system. The system should take into account various spatiotemporal scales of the land surface, hydrological and ecological processes. It should make it a priority aim to serve the development, validation and modification of integrated watershed models. It should act as an integrated remote sensing and ground based observing system, and should integrate well with information systems and watershed models. The premiums on sampling strategy and new observation methods, and the equal importance of monitoring and control experiments are also discussed in this section. We then introduce the current watershed observing system of the Heihe River Basin as a prototype study. It is composed of well instrumented field stations located along its upper, middle, and lower reaches with different landscapes, and operational meteorological and hydrological networks. Some comprehensive observation experiments have so far been carried out in the Heihe River Basin. They include the HEIFE (Atmosphere-land surface processes experiment at the Heihe River Basin), the Jinta experiment, and the WATER (Watershed Allied Telemetry Experimental Research). The last part of the paper introduces our further thinking of watershed observing system. It is of key importance to enhance the remote sensing observation ability of water cycle and related ecological processes in a river basin scale. It is only possible to better quantify the water cycle through the integration of remote sensing and in situ observations and model simulations. In summary, the water observing system, in good cooperation with watershed information system and integrated watershed models, constitutes a cyberinfrastructure and lays the foundation for the emerging watershed science.

中图分类号: 

[1] McLaughlin D. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering[J].Advances in Water Resources,2002, 25: 1 275-1 286.
[2] Li Xin, Cheng Guodong, Wu Lizong. Digital Heihe River Basin. 1: An information infrastructure for the watershed science[J]. Advances in Earth Science, 2010, 25(3): 297-305.[李新, 程国栋, 吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域[J]. 地球科学进展, 2010, 25(3): 297-305.]
[3] Committee on Scientific Accomplishments of Earth Observations from Space, NRC. Earth Observations from Space: The First 50 Years of Scientific Achievements[M]. National Academies Press, 2008:142.
[4] Wagner W, Verhoest N, Ludwig R, et al. Editorial ‘remote sensing in hydrological sciences’[J].Hydrology and Earth System Sciences,2009, 13(6): 813-817.
[5] Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future, NRC. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond[M]. National Academies Press, 2007:456.
[6] Smith E A, Asrar G, Furuhama Y, et al. International Global Precipitation Measurement (GPM) Program and Mission: An Overview[C]//Measuring Precipitation from Space. Netherlands: Springer, 2007:611-653.
[7] Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J].Proceedings of the IEEE,2010, 98(5): 666-687.
[8] Entekhabi D, Njoku E G, O′Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716.
[9] Durand M, Fu L L, Lettenmaier D P, et al. The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies[J]. Proceedings of the IEEE,2010, 98(5): 766-779.
[10] Rott H, Yueh S H, Cline D W, et al. Cold regions hydrology high-resolution observatory for snow and cold land processes[J]. Proceedings of the IEEE,2010, 98(5): 752-765.
[11] Drinkwater M R, Floberghagen R, Haagmans R, et al. GOCE: ESA′s first earth explorer core mission[J]. Space Science Reviews,2003, 108(1/2): 419-432.
[12] Imaoka K, Kachi M, Fujii H, et al. Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change[J]. Proceedings of the IEEE,2010, 98(5): 717-734.
[13] Jin Y Q, Lu N M, Lin M S. Advancement of Chinese meteorological Feng-Yun (FY) and Oceanic Hai-Yang (HY) satellite remote sensing[J].Proceedings of the IEEE,2010, 98(5): 844-861.
[14] Sellers P J, Hall F G, Asrar G, et al. The First ISLSCP Field Experiment (FIFE) [J].Bulletin of American Meteorological Society,1988, 69(1): 22-27.
[15] Sellers P, Hall F, Margolis H, et al. The Boreal Ecosystem Atmosphere Study (BOREAS): An overview and early results from the 1994 field year[J].Bulletin of the American Meteorological Society,1995, 76(9): 1 549-1 577.
[16] Jackson T. Soil Moisture Experiments in 2002 (SMEX02) Summary of Experiment Plan[R]. USDA, 2002.
[17] Cline D, Yueh S, Chapman B, et al. NASA Cold Land Processes Experiment (CLPX 2002/03): Airborne remote sensing[J]. Journal of Hydrometeorology,2009, 10(1): 338-346.
[18] Walker J P,Panciera R. National Airborne Field Experiment 2005: Experiment Plan[R]. Melbourne: Department of Civil and Environmental Engineering, The University of Melbourne, 2005.
[19] Committee on Integrated Observations for Hydrologic and Related Sciences, NRC. Integrating Multiscale Observations of U.S. Waters[M].National Academies Press, 2008:210.
[20] Kampe T U, Johnson B R, Kuester M, et al. NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure[J]. Journal of Applied Remote Sensing,2010, 4(043510), doi: 10.1117/1.336-375.
[21] Gong Peng. Progress in recent environmental applications of wireless sensor network[J]. Journal of Remote Sensing,2010,14(2): 387-395.[宫鹏. 无线传感器网络技术环境应用进展[J]. 遥感学报, 2010, 14(2): 387-395.]
[22] Delin K A, Jackson S P, Johnson D W, et al. Environmental studies with the sensor web: Principles and practice[J].Sensors, 2005, 5(1/2):103-117.
[23] Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. The problems of surface energy balance closure—An overview and case study[J]. Advances in Earth Science,24(7): 705-713.[王介民, 王维真, 刘绍民,等.近地层能量平衡闭合问题——综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-713.]
[24] Kleissl J, Gomez J, Hong S H, et al. Large aperture scintillometer intercomparison study[J]. Boundary-layer Meteorology, 2008, 128(1): 133-150.
[25] Jacobs J, Krajewski W, Loescher H, et al. Enhanced Water Cycle Measurements for Watershed Hydrologic Sciences Research[R]. Consortium of Universities for the Advancement of Hydrologic Sciences, Inc., 2006:65.
[26] McDonnell J J, Sivapalan M, Vache K, et al. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology[J].Water Resources Research, 2007, 43(W07301), doi:10.1029/2006WR005467.
[27] Consortium of Universities for the Advancement of Hydrologic Science. Hydrology of a Dynamic Earth [R]. Consortium of Universities for the Advancement of Hydrologic Science, Inc., 2007.
[28] Li Xin, Wu Lizong, Ma Mingguo, et al. Digital Heihe River Basin. 2: Data integration[J].Advances in Earth Science,2010, 25(3): 306-316.[李新, 吴立宗, 马明国, 等. 数字黑河的思考与实践2:数据集成[J]. 地球科学进展, 2010, 25(3): 306-316.]
[29] National Research Council. Opportunities in the Hydrologic Sciences[M]. Washington DC: National Academy Press, 1991:368.[30] Li Xin, Cheng Guodong. On the watershed observing and modeling systems[J]. Advances in Earth Science,2008, 23(7): 756-764.[李新, 程国栋. 流域科学研究中的观测和模型系统建设[J]. 地球科学进展, 2008, 23(7): 756-764.]
[31] Li Xin, Ma Mingguo, Wang Jian, et al. Simultaneous remote sensing and ground-based experiment in the Heihe river basin: Scientific objectives and experiment design[J]. Advances in Earth Science,2008, 23(9): 897-914.[李新, 马明国, 王建, 等. 黑河流域遥感—地面观测同步试验:科学目标与试验方案[J]. 地球科学进展, 2008, 23(9): 897-914.]
[32] Chen Rensheng, Kang Ersi, Ji Xibin, et al. Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the headwaters of the Heihe river[J]. Journal of Glaciology and Geocryology,2007, 29(3): 387-396.[陈仁升, 康尔泗, 吉喜斌, 等.黑河源区高山草甸的冻土及水文过程初步研究[J]. 冰川冻土, 2007, 29(3): 387-396.]
[33] Hu Yinqiao, Gao Youxi, Wang Jiemin, et al. Some achievements in scientific research during HEIFE [J]. Plateau Meteorology,1994, 13(3): 225-236.[胡隐樵, 高由禧, 王介民, 等.黑河实验(HEIFE)的一些研究成果[J]. 高原气象, 1994, 13(3): 225-236.]
[34] Wang Jiemin. Land surface process experiments and interaction study in China-from HEIFE to IMGRASS and GAME Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.[王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3): 280-294.]
[35] Hu Yinqiao, Gao Youxi. Some new understandings of processes at the land surface in arid area from the HEIFE[J].Acta Meteorologica Sinica, 1994, 52(3): 285-296.[胡隐樵, 高由禧.黑河实验(HEIFE)——对干旱地区陆面过程的一些新认识[J]. 气象学报, 1994, 52(3): 285-296.]
[36] Hu Zeyong, Lv Shihua, Gao Hongchun, et al. Comparative analyses on ground wind field and air temperature humidity characteristics inside and outside Jinta oasia[J]. Plateau Meteorology,2005, 24(4): 522-526.[胡泽勇, 吕世华, 高洪春,等. 夏季金塔绿洲及邻近沙漠地面风场、气温和湿度场特性的对比分析[J]. 高原气象, 2005, 24(4): 522-526.]
[37] Lu S H, An X Q, Chen Y C. Simulation of oasis breeze circulation in the arid region of the northwestern China[J].Science in China (Series D), 2004, 47(suppl.):101-107.
[38] Li X, Li X W, Li Z Y, et al. Watershed allied telemetry experimental research[J].Journal of Geophysical Research, 2009, 114(D22103), doi:10.1029/2008JD011590.
[39] Committee on US. Geological Survey, National Research Council. WatershedResearch in the US. Geological Survey[M]. Washington DC: National Academies Press, 1997:96.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[12] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[13] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[14] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[15] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
阅读次数
全文


摘要