地球科学进展 ›› 2010, Vol. 25 ›› Issue (9): 950 -959. doi: 10.11867/j.issn.1001-8166.2010.09.0950

综述与评述 上一篇    下一篇

海洋沉积物中色素生物标志物研究进展
赵军 1,姚鹏 2,3,于志刚 2,3*   
  1. 1. 中国海洋大学环境科学与工程学院海洋环境与生态教育部重点实验室, 山东青岛 266100;
    2. 中国海洋大学化学化工学院海洋化学理论与工程技术教育部重点实验室,   山东青岛 266100;
    3. 中国海洋大学化学化工学院海洋有机地球化学研究所, 山东青岛 266100
  • 收稿日期:2009-09-17 修回日期:2010-06-14 出版日期:2010-09-10
  • 通讯作者: 于志刚(1962-),男,山东莱阳人,教授,主要从事海洋化学和海洋环境科学研究. E-mail:zhigangyu@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重大国际(地区)合作研究项目“长江口及邻近海域底边界层生物地球化学过程研究”(编号:40920164004);国家自然科学基金面上项目“基于特征色素及其组合的海洋浮游藻化学分类方法研究和应用”(编号:40676068);国家自然科学青年基金项目“海洋浮游藻特征色素高分辨高效液相色谱分析方法研究”(编号:40806029)资助.

Progress in Marine Sedimentary Pigments as Biomarkers

Zhao Jun 1, Yao Peng 2,3, Yu Zhigang 2,3   

  1. 1.Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China;
    2. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; 
    3. Institute of Marine Organic Geochemistry, College of Chemistry and Chemical Engineering,Ocean University of China, Qingdao 266100, China
  • Received:2009-09-17 Revised:2010-06-14 Online:2010-09-10 Published:2010-09-10

海洋沉积物中的光合色素包含着水体、沉积物中浮游和底栖植物以及微生物群落的丰富信息,能表征特定生物来源,在埋藏到沉积物甚至发生某些改变之后仍然保留其源信息,是一类重要的化学生物标志物。结合总有机碳、总氮等其他海洋地球化学参数,沉积色素可用来研究海洋浮游植物和光合细菌的群落组成和丰度,反演海洋初级生产、水体富营养化水平及其历史趋势,指示水体和沉积物氧化还原条件,揭示海域气候条件等现状及其历史变化。沉积色素的研究,对于掌握海洋中碳的生物地球化学循环过程,回溯古环境、古海洋、古生态以及古气候记录,制定合理的海洋管理政策具有十分重要的意义。阐述了沉积物中色素的分类、来源、性质和分析方法,分析了色素在沉积物中的保存和变化规律,探讨总结了沉积色素作为化学生物标志物在海洋学研究中的应用。

   Photosynthetic pigments in marine sediments provide useful information concerning water column and benthic plants and microbial communities in marine accumulated sediments. They are important chemical biomarkers which can characterize certain biotic sources and retain their source information after burial in sediments, even after some alteration.
   Pigments in marine sediments mainly come from pelagic and benthic algae communities, phototrophic bacteria and aquatic higher plants, and  others come from terrestrial environment. Exposure to direct light, warm temperatures (>0℃), pH extremes, and enzymes should be avoided because pigments are labile and can degrade fast in the above environments. All sediment samples should be frozen at -20℃ or colder as soon as possible after sampling and stored at this temperature without additional treatment (e.g., freeze-drying) until just before the analysis of pigments. Since no extraction method is suitable to all kinds of sediments, it is necessary to optimize the extraction method according to the properties of sediment samples. Since 1980, High Performance Liquid Chromatography (HPLC) analyses have become the method of choice for rapid, quantitative determinations of carotenoid, chlorophyll and derivative content in aquatic ecosystems and their sediments.
   Pigments can degrade both in water column and sediment. The degradation rates of pigments can be affected by both their inherited natures and external factors. Usually, pigments undergo different phases of degradations, while they deposit from water columns to sediment-water interfaces, and till to the deep sediments. The degradation products of chlorophylls are more stable than their parents; the carotenoids with 5,6-epoxide function are more labile than those without this function.
   As biomarkers, sedimentary pigments can be used to ①characterize the composition and abundance of phytoplankton communities and their historical changes; ②reflect the primary production and status of eutrophication; ③trace the sources and fates of organic matter; and ④indicate hypoxia events. It is a good choice to combine sedimentary pigments with other marine environmental parameters, such as, biogenic silica, total organic carbon, total nitrogen, ratio of C/N, δ13C and δ15N. These kinds of multiproxy studies have been shown to be a reliable way of describing ecological status changes within a system. The researches on sedimentary pigments have implications for ①understanding the processes of biogeochemical cycles of carbon in marine sediments;②reconstructing the records of palaeoenvironment, paleoceanography, palaeoclimatology, palaeoecology; and ③formulating reasonable ocean management policies.

中图分类号: 

[1] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J].Nature,1978, 272(5 650): 216-222.
[2] Harris P G, Zhao M, Rosell-Mele A, et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity[J]. Nature,1996, 383(6 595): 63-65.
[3] Hodgson D A, McMinn A, Kirkup H, et al. Colonization, succession, and extinction of marine floras during a glacial cycle: A case study from the Windmill islands (east Antarctica) using biomarkers[J].Paleoceanography,2003, 18(3):1 067.
[4] Zhang Jie, Jia Guodong. Application of plant-derived n-alkanes and their compound-specific hydrogen isotopic composition in paleoenvironment research[J].Advances in Earth Science, 2009,24(8): 874-881.[张杰, 贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用[J]. 地球科学进展, 2009,24(8): 874-881.]
[5] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “record ers” of global environmental change[J].Proceedings of the National Academy of Sciences of the USA,2009, 106(20): 8 085-8 092.
[6] Yao Peng, Yu Zhigang. Advances of intact polar membrane lipids as chemical biomarkers for extant microorganisms in marine sediments[J].Advances in Earth Science,2010, 25(5): 474-483.[姚鹏, 于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J].地球科学进展, 2010,25(5): 474-483.][7] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian great lakes[J].Organic Geochemistry,2003, 34(2): 261-289.
[8] Leavitt P R, Hodgson D A. Sedimentary Pigments[M]//Soml J P, Birks H J, Last W M. Tracking Environmental Change Using Lake Sediments Volume 3. Dordrecht, Netherlands: Kluwer Academic, 2001: 295-325.
[9] King L L, Repeta D J. Novel pyropheophorbide steryl esters in Black sea sediments[J]. Geochimica et Cosmochimica Acta,1991, 55(7): 2 067-2 074.
[10] Goericke R, Shankle A M, Repeta D J. Novel carotenol chlorin esters in marine sediments and water column particulate matter[J].Geochimica et Cosmochimica Acta,1999, 63(18): 2 825-2 834.
[11] Chen N, Bianchi T S, Bland J M. Novel decomposition products of chlorophyll-a in continental shelf (Louisiana shelf) sediments: Formation and transformation of carotenol chlorin esters[J].Geochimica et Cosmochimica Acta,2003, 67(11): 2 027-2 042.
[12] Repeta D J. A high resolution historical record of Holocene anoxygenic primary production in the Black sea[J].Geochimica et Cosmochimica Acta,1993, 57(17): 4 337-4 342.
[13] Chen N, Bianchi T S, McKee B A,et al. Historical trends of hypoxia on the Louisiana shelf: Application of pigments as biomarkers[J].Organic Geochemistry, 2001, 32(4): 543-561.
[14] Bianchi T S, Engelhaupt E, McKee B A,et al. Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfjarden bay (Baltic sea proper)[J].Limnology and Oceanography,2002, 47(5): 1 537-1 544.
[15] Bianchi T S, Rolff C, Widbom B, et al. Phytoplankton pigments in Baltic sea seston and sediments: Seasonal variability, fluxes, and transformations[J].Estuarine, Coastal and Shelf Science,2002, 55(3): 369-383.
[16] Bianchi T S, Findlay S, Dawson R. Organic matter sources in the water column and sediments of the Hudson river estuary: The use of plant pigments as tracers[J].Estuarine, Coastal and Shelf Science,1993, 36(4): 359-376.
[17] Bianchi T S, Lambert C D, Santschi P H, et al. Sources and transport of land-derived particulate and dissolved organic matter in the gulf of Mexico (Texas shelf/slope): The use of ligninphenols and loliolides as biomarkers[J].Organic Geochemistry,1997, 27(1/2): 65-78.
[18] Bianchi T S, Engelhaupt E, Westman P, et al. Cyanobacterial blooms in the Baltic sea: Natural or human-induced?[J]. Limnology and Oceanography,2000, 45(3): 716-726.
[19] Kowalewska G. Algal pigments in Baltic sediments as markers of ecosystem and climate changes[J].Climate Research,2001, 18(1/2): 89-96.
[20] Zhu Zhuoyi. Hypoxia in the Changjiang Estuary and Its Adjacent Area—Started with Phytoplankton Pigments[D]. Shanghai: East China Normal University, 2007.[朱卓毅. 长江口及邻近海域低氧现象的探讨——以光合色素为出发点[D]. 上海: 华东师范大学, 2007.]
[21] Jin Haiyan, Chen Jianfang, Weng Huanxin, et al. Variations of paleoproductivity in the past decades and the environmental implications in the Changjiang estuary in China[J].Acta Oceanologica Sinica,2009,31(2): 113-119.[金海燕, 陈建芳, 翁焕新, 等. 长江口外赤潮多发区近几十年来的古生产力记录及环境意义[J]. 海洋学报, 2009, 31(2): 113-119.]
[22] Scheer H. An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications[M]//Grimm B, Porra R J, Rudiger W,et al. Chlorophylls and Bacteriochlorophylls. Netherlands: Springer,2006: 1-26.
[23] Wright S, Jeffrey S. Pigment Markers for Phytoplankton Production[M]//Volkman J K. Marine Organic Matter. Berlin Heidelberg: Springer,2006: 71-104.
[24] Keely B J. Geochemistry of Chlorophylls[M]//Grimm B, Porra R J, Rudiger W, et al. Chlorophylls and Bacteriochlorophylls. Dordrecht: Springer,2006: 535-561.
[25] Rowan K S. Photosynthetic Pigments of Algae\[M\]. Cambridge. UK: Cambridge University Press, 1989.
[26] Bianchi T S, Findlay S. Plant pigments as tracers of emergent and submergent macrophytes from the Hudson river[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47(3): 492-494.
[27] Brotas V, Plante-Cuny M R. The use of HPLC pigment analysis to study microphytobenthos communities[J].Acta Oecologica, 2003, 24(suppl.): S109-S115.
[28] Goericke R, Repeta D J. The pigments of prochlorococcus marinus: The presence of divinyl chlorophyll a and b in a marine prokaryote[J].Limnology and Oceanography,1992, 37(2): 425-433.
[29] Jeffrey S W, Hallegraeff G M. Chlorophyllase distribution in ten classes of phytoplankton: A problem for chlorophyll analysis[J].Marine Ecology Progress Series,1987, 35: 293-304.
[30] Bianchi T S, Findlay S, Fontvieille D. Experimental degradation of plant materials in Hudson river sediments[J]. Biogeochemistry,1991, 12(3): 171-187.
[31] Head E J H, Hargrave B T, Subba Rao D V. Accumulation of a pheophorbide a-like pigment in sediment traps during late stages of a spring bloom: A product of dying algae?[J].Limnology and Oceanography,1994, 39(1): 176-181.
[32] Chen N, Bianchi T S, Bland J M. Implications for the role of preversus post-depositional transformation of chlorophyll-a in the Lower Mississippi River and Louisiana shelf[J].Marine Chemistry,2003, 81(1/2): 37-55.
[33] Hodgson D A, Wright S W, Tyler P A,et al. Analysis of fossil pigments from algae and bacteria in meromictic Lake Fidler, Tasmania, and its application to lake management[J].Journal of Paleolimnology,1998, 19(1): 1-22.
[34] King L L, Repeta D J. Phorbin steryl esters in Black sea sediment traps and sediments: A preliminary evaluation of their paleooceanographic potential[J].Geochimica et Cosmochimica Acta,1994, 58(20): 4 389-4 399.
[35] Harradine P J, Harris P G, Head R N,et al. Steryl chlorin esters are formed by zooplankton herbivory[J].Geochimica et Cosmochimica Acta,1996, 60(12): 2 265-2 270.
[36] Jeffrey S W, Sielicki M, Haxo F T. Chloroplast pigment patterns in dinoflagellates[J].Journal of Phycology,1975, 11(4): 374-384.
[37] Heelis D V, Kernick W, Phillips G O,et al. Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z[J].Archives of Microbiology,1979, 121(3): 207-211.
[38] Buffan-Dubau E, Carman K R. Extraction of benthic microalgal pigments for HPLC analyses[J].Marine Ecology Progress Series,2000, 204: 293-297.
[39] Lucas C H, Holligan P M. Nature and ecological implications of algal pigment diversity on the Molenplaat tidal flat (Westerschelde estuary, SW Netherlands)[J].Marine Ecology Progress Series,1999, 180: 51-64.
[40] Reuss N, Conley D J. Effects of sediment storage conditions on pigment analyses[J].Limnology and Oceanography: Methods, 2005, 3: 477-487.
[41] Wright S W, Jeffrey S W, Mantoura R F C. Evaluation of methods and solvents for pigment extraction[M]//Jeffrey S W, Mantoura R F C, Wright S W. Phytoplankton Pigments in Oceanography. Paris: UNESCO,1997: 261-282.
[42] Zhao J, Yao P, Yu Z,et al. Orthogonal design for optimization of pigment extraction from estuarine sediments[J].Submitted to Marine and Freshwater Research,2010(in press).
[43] Mantoura R F C, Jeffrey S W, Llewellyn C A, et al. Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis[M]//Jeffrey S W, Mantoura R F C, Wright S W. Phytoplankton Pigments in Oceanography. Paris: UNESCO, 1997: 361-380.
[44] Mantoura R F C, Llewellyn C A. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography[J].Analytica Chimica Acta,1983, 151: 297-314.
[45] Wright S W, Jeffrey S W, Mantoura R F C,et al. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton[J].Marine Ecology Progress Series,1991, 77: 183-196.
[46] Zapata M, Rodriguez F, Garrido J L. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases[J].Marine Ecology Progress Series,2000, 195: 29-45.
[47] Airs R L, Atkinson J E, Keely B J. Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions[J].Journal of Chromatography A,2001, 917(1/2): 167-177.
[48] Garrido J L, Zapata M. Chlorophyll Analysis by New High Performance Liquid Chromatography Methods[M]//Grimm B, Porra R J, Rudiger W,et al. Chlorophylls and Bacteriochlorophylls. Netherlands: Springer,2006: 109-121.
[49] Foppen F H. Tables for the identification of carotenoid pigments[J].Chromatographic Reviews,1971, 14(3): 133-298.
[50] Jeffrey S W, Mantoura R F C, Bjornland T. Data for the identification of 47 key phytoplankton pigments[M]//Jeffrey S W, Mantoura R F C, Wright S W. Phytoplankton Pigments in Oceanography. Paris: UNESCO,1997: 447-559.
[51] Leavitt P R. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance[J].Journal of Paleolimnology,1993, 9(2): 109-127.
[52] Sun M Y, Lee C, Aller R C. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments[J].Geochimica et Cosmochimica Acta,1993, 57(1): 147-157.
[53] Repeta D J, Gagosian R B. Carotenoid diagenesis in recent marine sediments: I. The Peru continental shelf (15S, 75W)[J]. Geochimica et Cosmochimica Acta, 1987, 51(4): 1 001-1 009.
[54] Brown S B, Houghton J D, Hendry G A F. Chlorophyll Breakdown[M]//Scheer H. Chlorophylls. Boca Raton: CRC Press,1991: 465-489.
[55] Fietz S. Recent and Fossil Phytoplankton Pigments in Lake Baikal as Markers for Community Structure and Environmental Changes[D]. Berlin: Leibniz Institute of Freshwater Ecology and Inland Fisheries, 2005.
[56] Sun M Y, Lee C, Aller R C. Anoxic and oxic degradation of 14C-labeled chloropigments and a 14C-labeled diatom in Long Island Sound sediments[J].Limnology and Oceanography,1993, 38(7): 1 438-1 451.
[57] Daley R J. Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral and herbivore grazing effects[J]. Archive fur Hydrobiologie, 1973, 72: 409-439.
[58] Bianchi T S, Johansson B, Elmgren R. Breakdown of phytoplankton pigments in Baltic sediments: Effects of anoxia and loss of deposit-feeding macrofauna[J].Journal of Experimental Marine Biology and Ecology,2000, 251(2): 161-183.
[59] Sinninghe Damste J S, Koopmans M P. The fate of carotenoids in sediments: An overview[J].Pure and Applied Chemistry, 1997, 69(10): 2 067-2 074.
[60] Repeta D J. Carotenoid diagenesis in recent marine sediments: II. Degradation of fucoxanthin to loliolide[J].Geochimica et Cosmochimica Acta,1989, 53(3): 699-707.
[61] Menzel D, van Bergen P F, Schouten S,et al. Reconstruction of changes in export productivity during Pliocene sapropel deposition: A biomarker approach[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2003, 190: 273-287.
[62] Canfield D E. Factors influencing organic carbon preservation in marine sediments[J].Chemical Geology,1994,114(3/4): 315-329.
[63] Yang Huiqun, Zhou Huaiyang, Ji Fuwu,et al. Bioturbation in seabed sediments and its effects on marine sedimentary processes and Records[J].Advances in Earth Science, 2008, 23(9): 932-941.[杨慧群, 周怀阳, 季福武, 等. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.]
[64] Rabalais N N, Atilla N, Normandeau C, et al. Ecosystem history of Mississippi River-influenced continental shelf revealed through preserved phytoplankton pigments[J].Marine Pollution Bulletin,2004, 49(7/8): 537-547.
[65] Reuss N, Conley D J, Bianchi T S. Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries[J].Marine Chemistry,2005, 95(3/4): 283-302.
[66] Savage C, Leavitt P R, Elmgren R. Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea[J].Limnology and Oceanography,2010,55(3): 1 033-1 046.
[67] Wysocki L A, Bianchi T S, Powell R T, et al. Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi river plume[J].Estuarine, Coastal and Shelf Science,2006, 69(1/2): 47-63.
[68] Sun M Y, Aller R C, Lee C. Early diagenesis of chlorophyll-a in Long Island Sound sediments: A measure of carbon flux and particle reworking[J].Journal of Marine Research,1991, 49(2): 379-401.
[69] Chen N, Bianchi T S, McKee B A. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: Implications for carbon cycling in a river-dominated margin[J].Marine Chemistry, 2005, 93(2/4): 159-177.
[70] Szymczak-Zyla M, Kowalewska G. Chloropigments a in the Gulf of Gdansk (Baltic Sea) as markers of the state of this environment[J].Marine Pollution Bulletin,2007, 55(10/12): 512-528.
[71] Repeta D J, Simpson D J, Jorgensen B B,et al. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea[J].Nature,1989, 342(6 245): 69-72.

[1] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[2] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[3] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
[4] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[5] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[6] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[7] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[8] 周名江,朱明远. “我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展[J]. 地球科学进展, 2006, 21(7): 673-679.
[9] 张兰兰,陈木宏,向荣,张丽丽. 放射虫现代生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究[J]. 地球科学进展, 2006, 21(5): 474-481.
[10] 王辉;任建国. 2003年度海洋科学项目概况及管理工作新举措[J]. 地球科学进展, 2004, 19(2): 343-346.
[11] 王辉,王东晓,杜岩. 2002年国外物理海洋学研究主要进展[J]. 地球科学进展, 2003, 18(5): 797-805.
[12] 王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.
[13] 杨永亮. 10 Be在大洋边缘海洋学中的应用及模型[J]. 地球科学进展, 2002, 17(3): 355-362.
[14] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
[15] 胡修棉,王成善. 古海洋溶解氧研究方法综述[J]. 地球科学进展, 2001, 16(1): 65-71.
阅读次数
全文


摘要